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Introduction

In this article, we contrast the top-down approach to learning and instruction of
traditional instructional design models with the bottom-up approach of the domain
specific instruction theory for realistic mathematics education (RME).

This theory is based on the educational philosophy of Freudenthal of ‘mathematics
as an human activity’, which has sparked several decades of developmental research
in the Netherlands. Instruction sequences that fit his orientating philosophy have
been developed, resulting on this empirically grounded instruction theory, RME.

In order to offer some background to situate RME I will sketch a brief history of
theories on learning and instruction in connection with their implications for
mathematics education. In doing so I will try to justify the choice for the realistic
mathematics approach. The key principles of RME and the type of research that gives
rise to this theory ‘Developmental research’ will be discussed, as well as the use of
models within it, making a contrast with the traditional use of manipulatives.
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Learning theories

What is ‘learning’

Before we discuss about ways to achieve effective learning one has to know what
learning is actually all about. We say that someone has learned something, when
there’s a small relative change in one’s behaviour or a relative change in one’s
possibility to act differently. In other words, someone learns something when one can
do something that one couldn’t do before. In short, learning is a complex active
process of working out information, from which results that one behaves or can
behave differently from the way he did before (Boekaerts and Simon, 1993). Note
that we are talking about a permanent change. What one learns, one doesn’t forget
easily. One can also talk about the degree of flexibility of the learning result. This has
to do with its degree of transfer. When a learning result can be applied in a wide range
of situations different from the ones where this learning result took place, then we
say that the learning result has a high degree of transfer.

If we accept Boekaerts and Simon’s idea about what learning is, it becomes clear
what the goal of teaching is. Opinions diverge when one considers the question: how
does one learn under a teaching situation and how should one be taught? In the next
paragraph we shall give an overview of different theoretical streams in Education
Psychology and some more specific learning theories.

Behaviorist theories

Within Behaviorism there are two different opinions about learning. One is the
classic theory of conditioning, often related to the work of Pavlov. In general, this is
about an association principle lauded as this: if two things happen to someone at the
same time or during a short period behind each other it can happen that one of them
gets the same reaction as the other, when it happens again to the same person. The
same phenomenon can happen with animals. The classic example of Pavlov’s work
is the one where a dog gets food and simultaneously listens the sound of a bell for
a couple of times. Later on, the dog starts salivating just by hearing the bell. The dog
associates its sound with food, provoking the bell the same reaction as seeing the
food.

In the other theory, associated with the work of Skinner, learning is a reaction to
behaviour. According to this theory one has to first determine the behaviour to be
created or changed in the person. After that, one has to choose an award. Some kind
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of awards work with everybody, others are specific for the person we want to teach.
The idea is to award the person when he behaves the way that one wants him to.

In education psychology, this theory has dominated for a long time. One believed
that letting students take small steps and frequently prizing them, applying successively
approximations to the desired goal (that students show a certain behaviour- and
which proves that they have learned what they were supposed to), learning would
take place.

From this perspective, the mind is treated like a black box: what is inside ones
head can not be known and is not even interesting. What can be controllable is what
‘goes in and out’ of one’s head, stimulus and behaviour.

Cognitive theories

In cognitive theories, the attention of psychologists does no longer go to how
instruction should be given, but their focus is on information processing. In
opposition to behaviourists, cognitive psychologists’ interest is exactly the black
box, which is therefore no longer a black one. The object of their study is people’s
mind in order to explain and predict human behaviour. This theory is characterised
by the conception that knowledge is stored as an organised entity of small elements
of knowledge, a cognitive structure.

In cognitive education-psychology theories, the central question is how instruction
can be shaped to obtain an optimal guidance of the learning processes. At first, more
attention was given to the way students work out information, and to the nature of
information representation in human’s memory. Later on, studies were done on
people’s strategies on areas like memory, learning, thinking and solving problems.
One was interested in understanding how students structure and organise information,
how they record this in their memories and how they access this information when
they need it, for instance, in order to solve a problem.

It is not believed that acquisition of knowledge happens automatically. Instead,
learning is an active process: the student has to percept the relevant information, he
has to structure it and subsequently connect it with what he already knows.

This theory views mathematics as a ready-made system with general applicability,
and mathematics instruction as breaking up formal mathematics into learning
procedures and then learning to apply them.

Theory of Ausubel. Ausubel created in the sixties his cognitive learning theory, far
before cognitive psychology was in vogue (1968). The main idea in his theory is that
new knowledge has to be connected with already acquired one in order to make
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possible what he calls meaningful learning. Otherwise we can only talk about rote
learning. According to his theory, information is organised in hierarchies in the
memory, such that each concept is, or may be, connected with other concepts. He
refers to this as a cognitive structure.

To talk about meaningful learning it is necessary to find good bind points where
new information can be attached. Ausubel talks about three ways to do this. One
possibility is to connect a concept with a wider range of other related concepts in the
same level of structure, combinatorial learning. Another possibility is to connect
more abstract concepts with more concrete ones from a lower level in the structure,
superordinate learning. Finally, a concept can be related to more general ones, in an
upper level in the cognitive structure, subordinate subsumption.

According to Ausubel, this last one is the best way to achieve meaningful learning.
When learning more concrete concepts, a general concept can have a function of
integration and at the same time of explanation which makes this way of learning
more adequate than the other two.

Other important idea in his theory is the idea of discriminability of information
in the cognitive structure. He talks then about the principle of integrative reconciliation
where he means that, at the end of a learning process, it is important to compare
differences and similarities between old and new information in order to prevent it
from becoming unclear later.

At the time of Ausubel, there were in the United States psychologists who
defended discovery learning, where students learned through self experimenting and
discovering, but Ausubel believed that exploratory learning was much more efficient
than the discovery one. Furthermore, it is known from investigations that the
cognitive structure is not always organised in hierarchies like Ausubel believed.
Moreover, discovery learning is in certain situations efficient and effective. However
his ideas of attachment or meaningful learning are still in some way present in
modern theories.

Theory of Van Parreren. Van Parreren is a Dutch psychologist who developed in
the sixties a cognitive learning theory called system theory. He stressed the importance
of differentiating learning results and the activity that leaded to these results. When
a student comes to the right answer of a problem it does not yet mean that he has used
the correct method. The outcome can just be a coincidence.

An important concept in his theory is the concept of memory trace. According to
Van Parreren, learning is a process from which a trace results in one’s memory, which
gives the possibility for someone to act in a certain way. Learning is thus seen as a
process through which someone reaches his possibility to act. This possibility is
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guarantied by the traces learning leaves back in one’s mind. These traces are
connected to each other organised in a system, so that every time someone activates
a trace using what he learned, other connected traces will also be automatically
activated.

However, these systems are not all connected to each other. Van Parreren talks
about the existence of a system division. According to this, information about
different subject areas is saved in different places in our memory, organised in
separated systems, which, on the one hand prevents confusion of ideas. On the other
hand, this system division brings other problems with it. It is, for instance, more
difficult to access certain information at a specific moment, when it is not connected
with another already activated.

Action psychology theories

These theories are also called social-cultural theories, due to the importance they
give to the social and cultural environment in the learning process. Contrary to
cognitive theories, where learning is seen from the individual perspective, in action
psychology theories learning is seen as a social practice.

A good example of such a theory is the cultural-historical one that Vygotsky
developed in the beginning of the century, based on the processes of emergence of
thinking activity, which he named mental activity. Examples of such activities are
mental comparisons of concepts, construction of conclusions or mental calculations
of a sum of 2 numbers. According to him, the basis of these activities are external
perceptible ones, which are made internal through a social process. In other words,
Vygotsky sees learning as a process where a certain external action (taken as shared
by the community in that culture) is transformed in a mental activity. Dialog has in
this process an important role. He differentiates four principles in the desirable
dialog: the principle of interiorisation, the zone of nearest development, the central
role of the adult and the principle of social-communicative source of mental activity.

The first principle refers to the sources of mental activity, which has its basis in
external activities. According to the principle of the zone of nearest development,
education has to be orientated to what a student still can’t do alone (but almost and
certainly with help of an adult). The third principle refers to the importance of the
guidance of an adult to stimulate students to perform independently the tasks of their
zone of nearest development. The last one stresses the importance of the dialog, not
only between children and adults, but also among children.

The theory of Gal’perin. The theory of Gal’perin is included in the action
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psychology as he worked out theoretical starting-points of Vygotsky (Parreren &
Carpay, 1980). His theory stresses the stepwise formation of well-formed mental
actions. For Gal’perin, higher mental activities are developed through a process of
orientation. Therefore, he suggests a stepwise instruction plan in order to guide
students in learning or changing a certain mental action. He differentiates different
steps in this plan, which was used as heuristics in instruction design: the first step or
orientation phase concerns the analyses of what is ought to be learned and in which
sequence. It follows the phase of carrying out material activities. In order to be
possible for someone to learn a new action, one has to perform it. Students work with
external perceptive activities and they get feedback about their work. The third phase
is the verbalisation of the student’s actions that took place in the phase before.
Through this process, students are stimulated to generalise and abstract, and the
external action can be transformed into an internal one. In the fourth phase, students
work more and more independently till they reach the last stage of the learning
process, achieving an high mental level.

Constructivism

Constructivist theories have their roots in the eighties, through the contribution
of investigators as Von Glaserfeld, Steffe and Cobb, as they brought radical
constructivism under attention of mathematics education investigators (see, for
instance, Kilpatrick, 1987). The radical constructivism of Von Glaserfeld has its
roots in epistemology, cognitive psychology and cybernetic (Gravemeijer, 1995).
According to him, learning has to do with self-organisation, which means that
learning is an activity that takes form according to the intention of the person. Or as
Cobb puts it:

(…) learning is characterised as a process of self-organisation in which the subject organises
his or her activity to eliminate perturbations (Cobb, 1994).

According to constructivism, it is not possible for human beings to know an
objective reality. In other words, reality as we know it is dependent of our way of
knowing it.

We construct our knowledge of our world from our perceptions and experiences, which are
themselves mediated through our previous knowledge (Simon, 1995, p. 115).

Learning is then, in this perspective, the process through which a person adapts
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to his experiential world. The issue is not to know whether something is true or not,
but rather to know if it fits our experiential world. Von Glaserfield talks about
“viability”. A concept is then viable, or it fits our reality, if it makes sense to us at that
moment and fits our goals and purposes. This is also applicable to the theory of
constructivism itself, and we can therefore say that constructivism is only true as it
helps us making sense of our experiences, as Confrey (1995) mentions.

Whenever our experience differs from what we know (our reality), a process takes
place in order to re-establish this disequilibrium, the learning process. In this theory,
the idea that learning is an active, constructive process is even stronger than in the
cognitive and meta-cognitive theories. People in general, thus students as well,
create successive new internal representations of information using all their previous
knowledge. Note that this knowledge differs from person to person, once everyone
experiences different things, which makes impossible to reproduce one’s process of
learning. Each person experiences a unique process of learning. Learning is thus for
constructivists the construction of new internal representations of information, using
already available internal representations. An internal representation that doesn’t fit
the general accepted as true representation, is called misconception or like
constructivists prefer to call alternative conception (this last name is more adequate
for the constructivists idea that reality is subjective).

Paris and Byrne (Boekaerts et al., 1993) try to grasp what is common in the wide
variety of conceptions of constructivism by listing six fundamental ideas in
constructivist theories:

• Students have an intrinsic motivation to search for information
• The process of understanding is not simply a process of registering information
given; it goes beyond that. Students bring structure to it, they (re)organize and
they generalize the information given.
• There are two ways for changing mental representations: through new
experiences or simply as a result of spontaneous development.
• There are infinitive levels of understanding. Constructivists believe that by an
internal reorganisation of mental representations and by reflection, refined
understanding is reached.
• Someone’s level of knowledge and experience determines what he at that
certain moment can learn. The amount of guidance a student needs, his capacity
to process information and the kind of tasks he finds difficult, various with his
age.
• Reflection and reconstruction stimulate learning. People reflect by nature
about their own behaviour. When students reflect about the way they learn, what
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and how they learn, they construct themselves a mental theory about learning.
One can also wonder if knowledge development is essentially a social or a

cognitive process. Radical constructivists prefer a cognitive or psychological
perspective, where knowledge development is seen as individual construction.
Social interaction is taken into account but the major attention goes to the resulting
reorganisation of individual cognition. Other constructivists see higher mental
processes as socially determined. ‘Knowledge resides in the culture, which is a
system that is greater than the sum of its parts’ (Simon, 1995).

Radical constructivists believe that the world out there is filtered by our perception
and, therefore, it may even not exist. When we take this into account, and considering
a common sense idea that the way one perceives his world is influenced by his
culture, then I must agree that knowledge development is essentially a social-
process. However, if we apply the same idea to this conclusion (that what we belief
to be real is mediated by our perception), we see that we can discuss long about this.
It seams then wiser to analyze what can we learn out of this two perspectives, instead
of trying to defend the one or the other.

According to this:

 It is useful to see mathematics as both cognitive activity constrained by social and cultural
processes, and as a social and cultural phenomenon that is constituted by a community of
actively cognising individuals (Wood, Cobb, & Yackel, 1995).

More recently, the idea that is brought to the fore is that knowledge and capacities
are in one’s mind connected with the specific context where these were experienced.
‘Each experience with an idea-and the environment of which that idea is a part –
becomes part of that idea’ (Duffy & Jonassen, 1991, p. 8). According to proponents
of this notion of ‘situated cognition’ knowledge and capacities are connected with the
situation where they were obtained and therefore transfer doesn’t just happen
automatically from context to context.

Out of the previous, we get an idea of the diversity of theories within constructivism.
They all share the central idea that “students construct their own knowledge” but they
vary in what they mean by this adagio.

Socio-constructivism of Cobb, Yackel and Wood. Socio-constructivism as
advocated by Cobb, Yackel and Wood integrates social interactive theories with
constructivism, solving a problem created by radical-constructivists. As we have
seen, according to these, there’s no way to ensure that there is a reality “out there”.
One has just access to a self-made model of a reality based on one’s experiences. This
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brings up a problem to mathematics education. According to this idea, both
conceptions of students and of teachers or experts have equal value and one has
therefore no arguments to stipulate a direction for teaching.

Cobb, Yackel and Wood solve this problem by accepting the general assumed
knowledge about reality as point-of-departure: ‘the taken-as-shared mathematical
interpretations, meanings, and practices institutionalised by wider society’ (Cobb,
Yackel and Wood 1992, p. 16). The goal of instruction is then that students “learn”
this taken-as-shared knowledge. According to Cobb, learning mathematics is to
make yours the ideas and ways of working of mathematics community (Gravemeijer,
1995). The classroom is seen as a community where its own mathematics is
developed, as it develops its own “taken-as-share” meanings, interpretations and
practices.

The role of the teacher is then to guide students in the self-construction process
they go through (the learning process), in order to diminish the gap between the
taken-as-shared knowledge of the classroom community and the one of wider
society. With self-responsibility and intellectual autonomy of each member of the
community it is attempted to achieve together mathematical knowledge.

More generally it is by capitalising on students’ mathematical activity that the teacher
initiates and guides the classroom community’s development of taken-as-shared ways of
mathematical knowing that are compatible with those of the wider community (Cobb et al.,
1992).

In this process an important role is played by what is called ‘classroom social
norms’. They include what is understood within a classroom community as being
effective participation, the expectations of the teacher and the students about each
other’s responsibilities, the conception of what it means to do mathematics or the
ways mathematical validity is established. This way, it becomes clear for the students
what is expected from them in the mathematics class. By establishing the corresponding
social norms, students will, for instance, feel more responsible for the correctness of
their own answers. In a similar manner, norms about mathematical progress can help
the teacher to give the learning process of the classroom community direction
without injuring the students’ intellectual autonomy.

In social interaction, teacher and student try to come to shared understanding by
adjusting their interpretations and reactions to each other’s reaction in a process of
‘negotiation of meaning’.

During communication, a lot of information is taken as shared by both individuals
of the process, and therefore misunderstandings are natural. This is easy to understand
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from a constructivist perspective. What happens is that both parts construct, in fact,
a model of what at that moment is believed to be taken-as-shared, according to ones’
perception. Once this is just a model of the real situation, misconceptions are natural
to occur. This process of negotiation is then no more than the process through which
each other’s models of what is taken-as-shared are adapted to current believes.

According to this theory, the goal of teaching mathematics is to be able to
participate in the practice of the mathematical community (Gravemeijer, 1992). The
process that leads to this is referred to as “acculturation”, since learning mathematics
is seen as integrating mathematics “culture” in one’s own culture.

Realistic Mathematics Education (RME)

Realistic Mathematics Education is grounded in Freudenthal’s (1973, 1991)
interpretation of “mathematics as an human activity”. According to him, students
should be given the opportunity to reinvent mathematics by mathematising either
mathematical matter or subject matter from reality. Important about the subject to be
mathematised is that students experience it as real. This is one of the reasons this kind
of education is called Realistic.

According to Freudenthal, mathematising is a key process in mathematics for two
reasons. First of all, not only mathematising is the major activity of mathematicians,
but also it familiarises students with a mathematical approach to everyday life
situations. The second reason has to do with an important concept in this theory, the
principle of guided reinvention. The final step of mathematicians while developing
mathematics, that is formalisation through axiomatising, is the learning starting
point in traditional mathematics education. This is according to Freudenthal anti-
didactical once the way mathematicians came to their conclusions is here turned
upside down. According to him, mathematics education must be organised as a
process of guided reinvention, where, through mathematising, students can experience
to some extent a similar process to the process through which mathematics was
invented.

Note that Freudenthal uses the word mathematising in a broad sense, meaning the
process of not only recasting an everyday problem situation in mathematical terms
but also a process within mathematics. In his view, the goal for mathematics
education should be to support a process of guided reinvention in which students can
participate in learning processes that parallel, to some extent, the deliberations
surrounding the historical development of mathematics itself (Gravemeijer, Cobb,
Bowers and Whitenack, in press).
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So far, we have presented, in short, Freudenthal’s education philosophy. This has
sparked several decades of developmental research (Gravemeijer, 1994a) and is still
guiding current work, where instruction sequences that fit Freudenthal’s orientating
philosophy are developed. The result is an instructional theory in progress, Realistic
Mathematics Education (RME), which has been developed by reconstructing the
local theories implicit in these instructional sequences. As a consequence of this,
RME consists of interrelated series of instructional sequences, local instruction
theories and more general principles. From this last, we can distinguish three key
ones, which can be seen as heuristics for instructional design: guided reinvention and
progressive mathematising, didactical phenomenology and emergent models.

Key principles of RME

Guided reinvention and progressive mathematising. As mentioned before,
according to the principle of guided reinvention and progressive mathematising,
students should experience a learning process similar to the one followed by
mathematicians. An instruction route has to be found that allows students to discover
the intended mathematics by themselves. The developer has to imagine a route
through which he could have arrived to the outcome himself. In order to do this, two
sources of inspiration can be used.

One of them is the history of mathematics. Knowing how mathematicians came
to their conclusions can help the developer to lay out intermediate steps through
which the intended mathematics could be reinvented. The other one is the use of
informal strategies of students, once they can be interpreted as preceding more
formal ones. Developmental research conducted by Ter Heege (1983) and Streefland
(1988) highlighted the suitability of students’ solution procedures to lining out the
course of instruction. According to them, student’s alternative solution procedures
are well suited for this purpose, acting as ‘road signs’ for the developer.

 In general, a developer must find contextual problems that allow a variety of
solution procedures, preferably those that, together, indicate a possible learning
route through a process of progressive mathematising.

The reinvention principle implies long-term learning processes. These ones are
not separated in learning steps that can be mastered independently, but instead they
are processes of gradual changes. The intermediate steps are thus not to be seen as
a goal in itself but it must be seen in a long-term perspective.

Lets elaborate a bit more about mathematising and the reinvention principle by
following Gravemeijer (1994, chapter 3) in his discussion of the difference in the way
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applications are used in realistic mathematics instruction and in an information
processing approach. In an information processing approach, mathematics is viewed
as a formal system where its applicability is provided by general concepts and
procedures, implying that one has to adapt this abstract knowledge in order to solve
problems set in reality. The model that describes this process of solving a contextual
problem with the help of formal mathematics, can be seen in figure one.

Figure 1. Application of formal mathematics (Gravemeijer, 1994, 92).

First of all, the problem has to be translated to a pre-designed system by
formulating it in mathematical terms. After that, this problem is solved using
mathematical tools and finally the mathematical solution is translated back into the
original context. Transformation of a contextual problem into a mathematical one
requires reduction of information in order to fit the pre-determined system and at the
end of this process of problem solving, this information has to be taken into account.
This translation process leads to recognising problem types and establishing standard
routines, which contributes to a lack of insight in problem-solving. When a context
problem is not recognised as a sort of problem that fits a standard pattern, students
don’t know how to handle it. Learning mathematics is then resumed to learning
standard procedures to solve standard types of problems. It may be noted that in
practice this process will not always be as linear as described, the problem solver may
shuttle back and forth between activities of describing, solving and translating back.

In contrast, if one chooses to teach mathematics as an activity, problem-solving
takes a different meaning. Teaching becomes problem-centred, which means that the
problem is the actual aim of education, instead of the mathematical tools. The three
usual stages of problem solving, namely describing the contextual problem to a more
formal one, solving it in a more or less formal level and then translating its solution
back to the context, also take place here, but in a different way. Formal mathematical
knowledge is not a (pre-determined) system on its own where the problem has to fit
in. Instead, one tries to describe the contextual problem in a way that allows us to
understand and solve it. In fact, there’s no talk about translation but of description.
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The problem is described through schematising using self-invented symbols and
through identifying the central relations in the problem situation. The problem
doesn’t have to be presented in commonly accepted mathematical knowledge. This
description of the problem simplifies it, so that solving it in this more or less formal
level differs a lot from applying a standard procedure. The final step of translating
the solution back to the context, happens formally the same way as described before
with the important difference that now symbols are meaningful for the problem
solver as he was the one who gave them meaning.

Figure 2. Realistic problem-solving (Gravemeijer, 1994, 93).

Another process takes place when students sequentially solve similar problems.
Problem description and solving procedures develop, through simplifying and
formalising, into an informal language, which in turn evolves into a more formal one,
the commonly accepted mathematical language. This long time process is referred
by Treffers (1987) as vertical mathematisation. Through this process of mathematising
mathematical matter, formal mathematical knowledge is (re)constructed. This is
distinguished from Horizontal mathematisation, which is mathematising contextual
problems. Freudenthal characterises this distinction as follows:

Horizontal Mathematization leads from the world of life to the world of symbols. In the world
of life one lives, acts (and suffers); in the other one symbols are shaped, reshaped, and
manipulated, mechanically, compreendingly, reflectingly: this is vertical mathematization.
The world of life is what is experienced as reality (in the sense I used the word before), as
is symbol world with regard to abstraction. To be sure the frontiers of these worlds are
vaguely marked. The worlds can expand and shrink-also at one another’s expense (Freudenthal,
1991, p. 41-42).

As Freudenthal refers, the boundaries between what is vertical and what is
horizontal mathematization has to do with what one understands as reality. Freudenthal
(1991) clarifies: ‘I prefer to apply the term ‘reality’ to that which at a certain stage
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common sense experiences as real.’ (p.17) Reality and what one counts as common
sense in not static but it grows through the learning experience of the person in
question. In this context of reality as a mixture of interpretations and of sensual
experience, mathematics can also become part of one’s reality. In this sense learning
mathematics is including it in one’s reality. Freudenthal talks about ‘Mathematics
starting at, and staying within reality’ (1991, p.18). Suitable contextual problems
support this process, facilitating certain interpretations and strategies leading to
horizontal mathematising processes.

Didactical phenomenology. This principle refers to the analysis of real-life sources
of mathematics, in other words, the investigation of phenomena which (in the past)
contributed for the development of a certain mathematical concept.

This has to do with the realistic mathematics idea that formal mathematics should
develop from student’s activity of generalising and formalising situation-specific
problem-solving procedures and concepts. Therefore, this search for suitable contexts
is necessary, firstly to find out the kind of applications that must come first in
instruction (contexts which allow informal situation specific approaches) and
secondly to study their suitability to give rise and stimulate the referred process of
progressive mathematisation.

Emergent models. We shall come back to the function and character of models in
realistic mathematics education and talk deeper about it. For now we shall keep it
short.

This third Heuristic has to do with the role of emergent models as a means of
support to help the students in building upon their informal knowledge to develop
formal mathematics.

In product-oriented mathematics education, manipulatives are presented as pre-
existing material models that students have to learn understand and master. In
realistic education, instead, models emerge from students’ activity itself as a model
of a situation that is familiar to them. Through a process of generalising and
formalising, the model becomes later on an entity on its own. Only then, can the
model become a model for mathematical reasoning. Important in this process of
character change of the model is that models initially derive their meaning from their
reference to contextual situations.

Model is here used in a broad sense; it may refer to a verbal description, a model
situation, a model procedure as well as ways of symbolising and notating. What
characterises a model in RME is his function of simplifying, clarifying and
summarising contextual or mathematical matter. At first models are thus context-
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specific, or models of concrete situations that are experientially real for the students.
On this level, the model should allow solution strategies at the level of the situation
where the contextual problem is defined. As the students solve similar problems, the
model starts to become an entity of its own, which means that it can become an
affordance for more formal mathematical reasoning.

According to this heuristic, we can sum up the criteria that emergent models have
to fulfil:

• The model must not only refer to experientially real situations but it should
also allow students to use informal solution strategies.
• The model has to encourage the process of progressive mathematising.
• The model must have the potential to become an entity in and of its own in the
course of the learning process.

Use of models in Mathematics Education

The use of models in mathematics education has played an important place in
instruction theories. Models take different forms and uses within different theories.
In more traditional mathematics education theories the label ‘model’ refers to tactile
material or diagrams that students can manipulate, and for this reason they are
commonly referred in mathematics education as manipulatives. The way this
manipulatives should be used varies from theory to theory.

We will discuss the problems of the use of manipulatives in instruction and
analyse an alternative to its use. This alternative is given by a domain specific theory
for realistic mathematics education, where the term model has a different character.
Within this theory the label ‘model’ refers to a broader concept, which includes
situation models, schemes, descriptions or ways of noting. Moreover, they are
referred as “emergent”, as they emerge from students’ mathematical activity when
solving mathematical problems in context.

Manipulatives in Mathematics education

In action psychology we have talked about Gal’perin’s theory and his stepwise
formation of well-formed mental actions. In his instruction plan, the use of
manipulatives comes in the second step, right after the orientation phase. In his
theory, the manipulative action is not necessarily made with material but symbolic
representation can also be used (also referred as materialised action). He claims to
be essential that manipulative action is isomorphous with the intended mental
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activity, so that this one can be well formed.
There are enough examples that show that working with manipulatives does not

automatically fulfil this requirement. For instance, studies have shown that the use
of the abacus as a manipulative material might get the children used to action
structures, which do not correspond with the mental actions they are to conduct when
doing written arithmetic (Gravemeijer, 1994, chapter 2).

But what does this isomorphism between the material and the mental action
exactly mean? With Gal’perin’s approach it seems that the students keep thinking
about concrete material through out the instruction sequence. However, Parreren
(1981) shows that students can ultimately leave any reference to the material
manipulated. He shows with his “ building block model” that actions at the beginning
and end of the instruction don’t have to be isomorphic. Instead, a number of actions
at the beginning can be substituted by another later on, what he calls shortcuts. He
distinguishes three of them: the forming of perceptive actions, the automation of
motor skills and the one we are interested in, the restructuring of a task. This last
means that at a certain moment of instruction, the student discovers he can substitute
one or more actions (for instance, counting on) with another one (for example use of
a property or a memorised fact).

With Van Parreren, we get a clearer idea of the mental action that is ultimately
formed using manipulatives. However, he doesn’t explain how students are set free
from thinking about concrete materials. Let’s see how information processing, or
also called cognitive psychology, uses manipulatives during mathematics instruction.

Manipulatives in information processing.

As the name of the theory suggests, acquisition of knowledge is described as
information processing where 2 types of phenomenon are distinguished. We have
seen that knowledge is believed to be organised in a cognitive structure. Fitting a new
knowledge element into this structure (expanding knowledge) is referred to as
assimilation. A second phenomenon is called accommodation, and it means that
sometimes the cognitive structure has to be completely reorganised in order to make
room for new knowledge.

Within this theory, there is an important movement involved in an advance form
of task analyses, the “Task analytical approach”. In order to find a direction for
instruction, the cognitive structures of beginners and experts are analysed. This
approach, as it is known from Gagné (1977), was stripped of its behavioural features.
However, the use of a top-down strategy is maintained. As the desired action, the
action of the expert, is the starting point of this analyses. This places the to be learned
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expert procedures so much central that the aim towards acting with insight suffers
the consequences.

It seems as if the only question that is being asked is, how to get students so far that they will
exhibit the discovered model behaviour, without asking oneself if the students understand
what they are doing (Gravemeijer, 1994, chapter 2).

An example of instruction within this task analytical approach is the “mapping
instruction”. Children are asked to do subtraction problems using blocks (the so-
called Dienes blocks) and using a written algorithm, maintaining a step-by-step
correspondence between the blocks and the written symbols through the problem
(Resnick & Omanson, 1987). It is claimed that, this way, calculation is made concrete
as the mathematical relationships are embedded in manipulative material. However,
blocks must be handled according to rules set by the researcher. For instance, the
small blocks stand for the units, the bars for the tens and the squares for the hundreds.
The problem with this approach is, according to Gravemeijer (1994, chapter 2), that
the blocks are both the objects to be counted as well as the representation of the result
of that count. This means that no distinction is made between the countable objects
and the representation of the number, which makes children confused (see example
in Gravemeijer, 1994, chapter 2, p. 62).

Resnick and Omanson (1987) concluded based on data analyses that a learning
process of some other order is needed but the idea of working with this blocks
remains. They believe that the connection between working with the blocks and
doing arithmetic play an important role in helping children developing abstraction.

Criticism about the task-analytical approach. Cobb (1987) criticises the task-
analytic approach on the formation of abstract mathematical objects. According to
him, the analogy of working with the blocks and executing the written algorithms is
only clear to the designer, as he was the one who created the units of ten or hundred
as mathematical objects. As the student does not yet have that mathematical
knowledge, he does not see this analogy. For instance, according to the task analytic
approach, it is presumed that students recognise the bars as “tens”, but studies have
shown that this is not that simple. According to Cobb, this has to do with the fact that
the concept ten is not an easy one for children. He refers that Steffe and Von
Glasersfeld attested this as they identified six levels of the construction of “ten” as
a mathematical object.

In order to judge the significance of learning material, Cobb refers to the
importance of the distinction between the “actor’s point of view” (the one of the
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student) and the “observer’s point of view” (the one of the observer). One should try
to look at the manipulatives through the eyes of the children, because the fact that we
already have that abstract mathematical knowledge unable us to see the problems
that children who not yet have it, go through. The problem has to do with the lack of
distinction between the mental representation (internal representation) and a didactical
representation in the form of concrete material (external representation), like Cobb
points out. About this, Gravemeijer writes:

By not making a clear distinction between internal and external representation it goes
unnoticed that one is mixing up the time order: the student needs the mental representation
which he or she must construe in order to be able to interpret the concrete representation
(1994, chapter 2).

From a constructivist perspective, there is no fundamental difference between the
so-called abstract mathematical knowledge and the situated informal knowledge of
the students, since all knowledge is individually (re)constructed. Instead of trying to
transmit abstract mathematical knowledge, Cobb suggests to provide students with
the opportunity to construct their own mathematical knowledge themselves.
Furthermore, through social interaction and negotiation, one can try to attune the
various constructions within a classroom community as much as possible, and
together achieve mathematical knowledge.

Alternative ways to avoid misconceptions. A way to destroy misconceptions of
students is suggested by Van den Brink (1981). He suggests creating conflict
situation in order to make students discuss their conceptions. These are situations that
conflict with student’s self-developed knowledge and make discussions possible and
meaningful. Through discussions is then possible to realise these misconceptions
and consequently destroy them.

However, one can instead wonder if it is not possible to avoid misconceptions on
the first place. In RME, misconceptions are tried to be avoided through the use of the
reinvention principle (see key principles of RME). In realistic mathematics, students
attribute meaning to material devices by themselves in problem oriented instruction.
For instance, to develop the denary system, concrete material is used as a visual
support to symbolise quantities situated in context. Agreement about how to
manipulate the material comes to the forth as a way to solve a problem and not as a
pre-determined thing.

According to Gravemeijer (1994, chapter 2), this approach also brings up some
problems. It is possible that children, at a certain point, start handling the material
without thinking about the context or the meaning of the handling. Furthermore, as
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we have seen, students develop their own strategies that are not always isomorphous
with the intended mental action. For this reason, it is important that action with
concrete material is kept used in instruction as a transition phase. This means that
they only should work as a framework or reference to other instruction actions. In
other words, instruction must not be centred in the material action itself but in their
support in solving a problem. Moreover, the material action should not be mechanised,
in order to avoid students to keep on thinking about concrete material.

The realistic approach to manipulatives seems to offer solutions to avoid
misconceptions, but according to Gravemeijer (1994, chapter 2), a study of the actual
solution process of students and actual mental representation of mathematical
concepts and relationships remains essential.

Models in RME

In RME a different approach is used to the use of models in instruction. Models
are not presented as ready made things, mostly in the form of concrete material, that
students have to learn and master in order to understand the abstract mathematical
knowledge embedded in it. Instead, the label model refers to a broader concept,
placed in an intermediary level between situated and formal knowledge. A model is
defined in terms of signifying relations established in activity for some purpose
(Cobb, 1998). Furthermore, models are not a result of extracting relationships from
situations, but they rise from activity in and reasoning about situated problems. The
firm distinction between the model and the situation being modelled disappears, as
‘model and the modelled situation co-evolve and are mutually constitutive’ (Cobb,
1998).

A characterising feature of models in RME is that they emerge in instruction, as
a result of mathematical activity, following the reinvention principle and progressive
mathematising. At first, they are context-specific models of a situation. Later on, as
the model is generalised over situations, it changes from character, serving as basis
for developing mathematical knowledge: it was a model of a context-specific
situation to become a model for mathematical reasoning.

As we can see, the term model in RME is much broader than in manipulatives-
based mathematics education. They include model situations, descriptions, ways of
noting, and diagrams. They can also take the “external form” of a manipulative, but
due to its place in instruction (not as a starting point) and to the way it is introduced
(according to a bottom-up approach) makes it have another character. They are
meaningful to the students as they are introduced in a more natural way, coming to
the fore as the materialisation of student’s own activity.
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Conclusion

We have seen different approaches to the use of manipulatives in mathematics
education. In each theory, manipulatives are used to facilitate the learning of abstract
mathematical knowledge, through making it “concrete” to the students. Manipulatives
are external representations of this knowledge. Instruction with manipulatives
strives to maintain an isomorphism between the action with the material and the
intended mental action.

The different approaches we have seen can basically be divided into two different
kinds of approach.

One is a top-down approach, where manipulatives, obtained from abstracted
mathematical knowledge, are designed by experts to create a concrete framework of
reference in which the intended mathematical knowledge is embodied. Manipulatives
are therefore presented to the students as an already-made thing that students have
to understand and learn to use in order to learn the mathematical concepts.
Knowledge is this way materialised and therefore made concrete to the students.
Learning is then based on the idea of transfer, in other words, in the idea that the
material transmits certain knowledge.

We pointed out that with this approach students don’t get much insight and have
problems with applications. In other words, they may succeed using manipulatives
but they fail when they have to do it without it.

Analyses from a constructivist point of view have been able to explain this.
According to Cobb the fact that the material is concrete in the sense of tangible does
not yet mean concrete in the sense of making sense. The mathematical knowledge
embodied in the material is only recognisable for the experts who already have it. For
the students there is nothing to be seen, as they don’t yet have that knowledge.

In contrast with this, we have seen a bottom-up approach, known as a domain
specific theory for realistic mathematics education. Instruction starts at the informal
knowledge of the student and models emerge out of student’s mathematical activity.
The term model refers to a concept broader than the concept of manipulative,
including description of situations, ways of symbolising and making notations.
Furthermore, in RME manipulatives loose their character of an already made thing.
Materials are used as a tool to solve practical problems in a certain context, where
meaning is negotiated between the members of the class.
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Socio-constructivism and RME

Although realistic mathematics education and constructivism emerged
independently, they have a lot of similarities. They are compatible and even
complement each other (Gravemeijer, 1995 and Cobb, 1994).

In both constructivism and in RME, students’ constructions are placed central,
although in a slightly different way. In realistic education is said that students should
construct their own knowledge while constructivism believes that there is no other
way. Even if education doesn’t take this into account, students always construct their
own knowledge, say constructivists. Moreover, constructivism is more theoretical
orientated than RME and in that sense it is possible to see constructivism as a
theoretical basis for RME.

There are also other similar ideas between these two theories that are worth
pointing out:

• The ‘taken-as-shared’ idea of constructivism is recognised in realistic
mathematics as well, in Freudenthals’s idea of common sense: ‘reëel is datgene
waar je niet over nadenkt, wat je zonder problemen als reëel of concreet
aanvaardt’(‘real is all one doesn’t think about, what one takes as concrete and
real without problems’) (Freudenthal, 1991). As well as in RME, socio-
constructivists believe that general interpretations, knowledge and practices
can be a point of departure in mathematics education.
• The “acculturation” idea of constructivism is in agreement with realistic
believes, since learning mathematics is in RME seen as learning to do
mathematics, to be able to participate in “mathematics as an human activity”.
• The socio-constructivism idea that mathematics is a human construction [‘de
aard en de inhoud van de wiskunde is historisch, sociaal en cultureel bepaald’
(‘the nature and the content of Mathematics is historically, socially and
culturally determined’) (Gravemeijer, 1992)] is related to the idea of Freudenthal
of mathematics “as an human activity”.

In spite of all the similarities between these two theories, we can’t forget that
(according to Cobb, 1994) socio-constructivism is not an education theory like RME
and, therefore, it doesn’t define a particular way of teaching. As an epistemology
(theory of knowledge) that it is, it describes knowledge development, whether
teaching is going on or not.
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Developmental Research

A big change in mathematics education has been happening in the last decades.
In part influenced by Freudenthal’s plea for a different kind of mathematics
education a need for a new kind of mathematics was felt in the Netherlands.
Internationally, the awareness for such a need coincided with the rise of constructivism.

In fact, although constructivism is not an instruction theory, it does give a good
framework to think about mathematics learning in the classroom. Indeed, different
constructivist studies demonstrated, for instance, the insufficiency of the traditional
(Americans) primary mathematics education. Students’ constructions were shown
most of the times to be different from the ones intended, which brought researchers
to think about the kind of mathematics learned through traditional methods.

In general, a change that gives more autonomy to the students is made in
mathematics. Reform in mathematics education asks for a shift from what teachers
do, to what students do, which means that “teaching by telling” has to be replaced
by “students constructing” or “inventing”, as Gravemeijer (1998a) notes. According
to him, the problem that rises from this shift is how can one make students invent
what one wants them to invent?

This is the question that researchers at Freudenthal Institute have been trying to
answer in the last two decades, striving to develop a mathematics education, that
correspond with Freudenthal’s idea of “mathematics as a human activity”. What they
try to find out is the way mathematics education should look like so that it fulfils
Freudenthal’s educational philosophy. Having this as starting point, research is done
through experimenting with mathematics education in practice, and reflecting on
this practice. From this reflection, an empirically founded local instruction theory is
developed for that topic, which in turn serves as base for new experiments. The result
of this cyclic process of theory development is what we call a “domain-specific
instruction theory for realistic mathematics education” (RME). The type of research
that gives rise to this theory is the developmental research.

Developmental Research-developing RME

Developmental Research is a kind of research named by the Research Advisory
Committee of the NCTM (1988) “Transformational research” (Gravemeijer, 1998a).
This kind of research is characterised by its focus on “What ought to be” in place of
“what is”, once it addresses the question of how to create education that fulfils pre-
given standards or ideals.

Developmental research is an integration of development and research, which
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Gravemeijer very clearly describes as both “developing by research, and research by
developing”. He says:

Developmental research consists of a mixture of curriculum development and educational
research, in which the development of instructional activities is used as a means to elaborate
and test as instructional theory (Gravemeijer, 1998a).

Having as point of departure Freudenthal’s plea of “mathematics as a human
activity”, and his philosophical education theory, researchers experiment with
mathematics education and reflect on this practice. An empirically grounded
instruction theory develops from this reflection and constitutes the new base for
further experiments. This theory initially has a local character as it describes the way
a specific mathematical topic should be taught in order to fit the realistic philosophy.
The step towards a more general theory is made when a pool of local instruction
theories is formed and a search for common features is made. However, this theory
is still local as it is confined to mathematics education, and it is linked to the realistic
approach. The product of developmental research is for this reason called a “domain
specific instruction theory for realistic mathematics education” (RME).

Figure 3. Cyclic process of theory development (Gravemeijer, 1998).

This way, curriculum development goes together with theory development as two
sides of the same coin, having as final goal theory development.

The research method

The research method itself is also subjected to a similar cyclic process as the
instruction theory, RME. See picture 4.
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Figure 4. Cyclic process of emergence of the research methodology (Gravemeijer, 1998).

While developmental research practice shapes its method, the method itself
guides the practice. This has to do with the research characteristic, of researching
“what is ought to be” in place of “what is”. Developmental research practice tests its
method and provides information to improve it, becoming more effective in
searching “what is ought to be”. As we see, just like with the instruction theory of
RME, the developmental research method is never ready but it is in permanent
transformation and adaptation.

Instruction design

The approach to instruction design within developmental research differs a lot
from traditional approaches. Traditional instruction design models are concentrated
on learning outcomes without giving attention to the processes that lead to those
learning results. On the contrary, in developmental research, these teaching-learning
processes and students mental constructions are central.

The teacher’s role is, like one can expect, other than in a traditional design mode.
To understand this better, we introduce what Simon calls mathematics teaching
cycle.

Simon’s mathematics teaching cycle. An important notion in the teaching cycle of
Simon, and which describes the role of the teacher, is the notion of hypothetical
learning theory (HTL). He defines it:

The consideration of the learning goal, the learning activities, and the thinking and learning
in which the students might engage make up the hypothetical learning trajectory (…).
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This concept refers to the teacher’s work before the teaching situation. According
to Simon, the teacher should try to envision the student’s mental activities when
working in the activities he plans, and furthermore try to anticipate how these
student’s mental activities might help them achieve the desired insights. He speaks
about hypothetical learning trajectory, as the actual one can not be known in advance.
What is possible is to construct a hypothetical one based on expectations about this
learning trajectory. Of course, and according to constructivism philosophy, each
student follows a slightly different individual learning trajectory, but they are quite
similar.

During the teaching-learning process in the class, the teacher can find out in which
extend hypothetical learning trajectories differ from the real ones. With new insights
about student’s conceptions and with the experience with the instructional activities,
the teacher will be able to construct a modified hypothetical learning trajectory for
the subsequent lessons, and so on. This is what Simon refers to as mathematics
teaching cycle.

Figure 5. Mathematics teaching cycle (Simon, 1995, 136).

Freudenthal’s cycling process. In a similar way Freudenthal talks about a cyclic
process of “thought experiments” and “teaching experiments”. See figure 6:
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Figure 6. Cyclic process (Gravemeijer, 1998).

This cyclic process is the backbone of developmental research. This process is
very similar to Simon’s mathematical teaching cycles. The researcher constructs a
set of instructional activities, which is worked out in a process of (re)designing and
testing. There are however some differences. First of all, the researcher’s goal is not
only to develop instructional sequences but especially local instructional theories.
Furthermore, while the teacher may focus on one or two lessons, the developmental
researcher has to have a long-term learning process in mind. The process he goes
through is then a chain of cycles of thought and teaching experiments. See figure 7:
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Figure 7. Developmental research, a cumulative cyclic process (Gravemeijer, 1998).

Justifications

Since the theory and conclusions that develop from developmental research have
an empirical base, it brings up problems of justification. However, Freudenthal
explains it very simply:

Developmental research means: experiencing the cyclic process of development and
research so consciously, and reporting on it so candidly that it justifies itself, and that this
experience can be transmitted to others to become like their own experience (1991, p.161).

The process through which the local instruction theory is developed should justify
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the theory. This is called in ethnographic research “trackability”. As Gravemeijer
refers (1998a), since the norm of trackability is truly fulfilled, the teachers can
appropriate the experiences and considerations of the researcher and be able to make
their own adaptations. They can take the theories of the researchers as conjectures,
and test them in their own classes, making a contribution to the development of those
theories, “instead of being passive consumers of knowledge produced by others”.

Conclusions

We have seen that nothing in developmental research is static or ready, neither its
method nor the resulted domain-specific theory for realistic mathematics education.
Developmental researchers are themselves under a cyclic learning process of
thought and teaching experiences, through which they construct theory and improve
their method. In this process, conjectured theories are constantly adapted and
transformed to fit the new “reality” instructional practices reveal.

Furthermore, nothing is considered alone but everything is connected. So we talk
about “developing by researching, and researching by developing” (Gravemeijer,
1998a).

Note that this idea that in developmental research, theory and methodology are
constantly under construction is in agreement with constructivism and with realistic
mathematics philosophy, where it has its base of inspiration and guide line.
Mathematics is an human activity and learning is a process through which knowledge
is constructed. We can’t say for sure if something is true or really exists. Something
is true only while it is seen as so. Moreover, everybody is constantly constructing,
and adapting knowledge based on his or her perception and experiences, thus also
researchers.

Final remarks

After all that has been discussed, I would like to point out two remarkable things.
First of all, I would like to highlight the never-ready character of the domain

specific theory for realistic mathematics education and its research method, the
Developmental Research. Its character works as a protection to avoid that it becomes
unadjusted to reality contributing for a more reliable theory. History has proved
enough times that ‘trues’ change through out time. New discoveries ask for constant
adaptations and rearrangements of what is taken as true at a certain moment in time.
In other words, Human knowledge is under a constant process of reconstruction. The
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fact that the method of developmental research and the theory that arises from it are
in constant adaptation and change, based on practical experience, suffering a
development itself, makes it stay actual with current beliefs, mastering itself.

Another thing I would like to point out, as I find it of major importance in
education, is that in realistic mathematics education, as well as in the socio-
constructivism, the students are placed central. It is the student who constructs its
own knowledge, say socio-constructivists. Students should have the opportunity to
experience a learning process similar to the one followed by mathematicians,
reinventing mathematics through guided reinvention and progressive mathematising,
is the opinion of supporters of realistic mathematics education. Models should
“emerge” from the students’ own mathematical activity, working as a natural tool in
problem solving, and not as something made by experts to transfer to students the
mathematical knowledge embodied in it. More responsibility and autonomy is given
to the student, making a clear contrast with the “God” authority of the teacher of more
traditional instruction theories. In sum, a bottom-up approach is preferred to a top-
down one, as being a more natural one.

I could say that I defended a top-down approach to instruction, as that was the one
I experienced myself at school most of the times. However, I remember not being
very enthusiast about it. I remember asking myself what the teacher was actually
trying to say, and asking myself, sometimes also to the teacher, about the reason for
those names and symbols, where they had come from or what their use was. I am also
aware of the lack of insight I have in a lot of subjects of mathematics and that I have
to use tricks and mechanised methods to solve some problems or to do some
computations. Furthermore, I notice that I can’t learn something that doesn’t fit
properly in the knowledge I have at a certain point and that, therefore, I construct my
own knowledge having as starting point what I know at that moment. As a
conclusion, I definitely defend a bottom-up approach to instruction, where mathematics
“starts and stays within reality” and knowledge grows in a meaningful way.
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ABSTRACT. Realistic Mathematics Education (RME) has been developed in the Netherlands
in the past decades, based on the educational philosophy of ‘mathematics as an human activity’
of Freudenthal. Starting with a brief history of theories on learning and instruction, and passing
through a discussion on the use of models in Mathematics Education, in this article, a choice for
the bottom-up approach to learning and instruction of Realistic Mathematics Education is
gradually justified. In this process, the key principles of RME as well as the type of research that
gives rise to it are discussed as well.

Key-words: Realistic Mathematics; Teaching and learning theories; Developmental Research;
Models in Mathematics Education; Manipulatives.

RESUMO. A Educação Matemática Realista (RME) tem vindo a ser desenvolvida na Holanda
nas últimas décadas, baseada na filosofia educacional da ‘Matemática como uma actividade
humana’ de Freudenthal. Esta teoria de Educação Matemática faz uma abordagem ao ensino e
aprendizagem que se distingue de outras, entre outras razões, pela sua abordagem “bottom-up”.
Começando por delinear um percurso histórico sobre as diferentes teorias de ensino e aprendi-
zagem e passando por uma discussão acerca do uso de modelos em educação Matemática,
justifica-se gradualmente neste artigo a importância desta abordagem. Neste processo, discutem-
se ainda os princípios chave que guiam a RME e o tipo de investigação que a origina.

Palavras-chave: Matemática realista; Teorias de ensino e aprendizagem; ´Developmental
Research´; Modelos em Educação Matemática; Material Manipulativo.
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