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Recent Algebra learning/teaching research has pointed to the importance of develop-
ing algebraic thinking for all students, from grades 2 to 12 (see Davis, 1995) — not just 
for secondary school students. Th e seeds for change in ideas about school Algebra were 
fuelled not only by the failure of students to develop either technical skills or conceptual 
meaning from purely skill-based approaches to Algebra instruction (e.g., Carry, Lewis, 
& Bernard, 1980; Küchemann, 1981) but also by socio-democratic principles applied 
to Algebra education (Chazan, 1996). Students had been found to experience great dif-
fi culty in making the transition from arithmetic to algebraic thinking — for instance, 
in moving from arithmetic operations and their results to working with variables and 
the generalized form of operations along with their transformations (see, e.g., Kieran, 
1992, 2006, 2007). New ways of thinking about the content of secondary school Alge-
bra, as well as the notion that introducing algebraic activity in primary school (Kaput, 
1995), could help in overcoming some of the obstacles associated with secondary school 
Algebra, began to emerge. Algebra curricula were developed that included the concept 
of function as a central organizing theme (e.g., Heid, 1996), often supported by the use 
of multi-representation technology (Kieran & Yerushalmy, 2004) and by the motivat-
ing force of interesting problem situations (National Council of Teachers of Mathemat-
ics, 2000). However, the most far-reaching stimulus for change was perhaps the view 
that Algebra was not merely a set of procedures involving the letter-symbolic form, but 
also that it consisted of generalizing activity and provided a range of tools for represent-
ing the generality of mathematical relationships, patterns, and rules (e.g., Mason, 2005). 
Th us, Algebra came to be seen not merely as technique, but also as a way of thinking 
and reasoning about mathematical situations. Moreover, this latter perspective seemed 
amenable for inclusion at the primary school level, within a reconsidered approach to the 
teaching of arithmetic that drew on the inherently algebraic character of arithmetic.
 Th is article begins fi rst with a presentation of the various ways in which researchers 
describe algebraic reasoning in school mathematics, with particular focus on that of the 
primary school level. Th is leads into a discussion of the role of tasks and discussion ques-
tions in the development of students’ algebraic reasoning. Th e rest of the article, which 
constitutes its main thrust, consists of examples drawn from the international research 
literature on algebraic reasoning that illustrate ways in which task and teacher questions 
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can be set up so as to encourage relational thinking, awareness of form, and generalizable 
approaches in students from the primary up through the early secondary levels. Th e task 
examples that are discussed all suggest the importance of one central feature: structured 
sequences of operations that draw students’ attention to crucial aspects of form and its 
generalizability. 

Conceptualizing algebraic reasoning

Carraher and Schliemann (2007), in their review of the newly-emerging research litera-
ture on the development of algebraic reasoning1 at the primary school level, off er the fol-
lowing characterization of algebraic reasoning:

Algebraic reasoning refers to psychological processes involved in solving 
problems that mathematicians can easily express using algebraic notation. 
… In the same sense that societies solved problems of Algebra before the 
existence of algebraic notation (Harper, 1987), students may be able to 
work with variables and the rules of arithmetic (i.e., the fi eld axioms) be-
fore they have been taught Algebra. (p. 670)

Carraher and Schliemann’s characterization thus stresses the implicit cognitive processes 
that may be at play among younger students when engaged in problem solving (such as, 
noticing structural relations and making generalizations) and suggests that some of these 
processes may involve variables and the rules of arithmetic.
 Blanton and Kaput (2005) too emphasize generalizing processes in their character-
ization of algebraic reasoning: “We take algebraic reasoning to be a process in which stu-
dents generalize mathematical ideas from a set of particular instances, establish those 
generalizations through the discourse of argumentation, and express them in increasingly 
formal and age-appropriate ways” (p. 413). Th ey add, moreover, that algebraic reasoning 
can take various forms:

(a) the use of arithmetic as a domain for expressing and formalizing gen-
eralizations (generalized arithmetic); (b) generalized numerical patterns to 
describe functional relationships (functional thinking); (c) modeling as a 
domain for expressing and formalizing generalizations; and (d) generaliz-
ing about mathematical systems abstracted from computations and rela-
tions. (p. 413)

A still broader view of the nature of algebraic reasoning has been expressed by Lew 
(2004), a mathematics education researcher from Korea — a country where a formal ap-
proach to the teaching of Algebra with literal symbols begins in the seventh grade:

Algebra is a subject dealing with expressions with symbols and the ex-
tended numbers beyond the whole numbers in order to solve equations, 
to analyze functional relations, and to determine the structure of the rep-
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resentational system, which consists of expressions and relations. However, 
activities such as solving equations, analyzing functional relations and de-
termining structure are not the purpose of Algebra, but tools for the mod-
eling of real world phenomena and problem solving related to the vari-
ous situations. Furthermore, Algebra is much more than a set of facts and 
techniques. It is a way of thinking. Success in Algebra depends on at least 
six kinds of mathematical thinking abilities as follows: generalization, ab-
straction, analytic thinking, dynamic thinking, modeling, and organiza-
tion. (pp. 92–93)

In his remarks, Lew makes a distinction between Algebra as a set of facts and techniques 
and Algebra as a way of thinking. He also admits that the six ways of thinking that he 
describes are mathematical, that is, they go beyond the merely algebraic. In the Korean 
curriculum, the development of algebraic thinking at the elementary school level is based 
on the elaboration of activities related to these kinds of mathematical thinking.
 Th ese various views on that which constitutes algebraic reasoning at the primary 
school level are a refl ection of the related views for the intermediate and secondary school 
levels.  For example, Kieran (1996, 2004) categorized school Algebra according to the 
activities typically engaged in by students: generational activities, transformational activ-
ities, and global meta-level activities. While the generational activities involve the forming 
of the expressions and equations that are the objects of Algebra and the transformational 
activities typically deal with symbol manipulation procedures, the global, meta-level activ-
ities are somewhat special. Th ese are the activities for which Algebra is used as a tool but 
which are not exclusive to Algebra. Th ey include problem solving, modeling, noticing 
structure, studying change, generalizing, analyzing relationships, justifying, proving, and 
predicting — activities that could be engaged in without using any letter-symbolic Alge-
bra at all. In fact, they suggest more general mathematical processes and activity. How-
ever, attempting to divorce these meta-level activities from Algebra removes any context 
or need that one might have for using Algebra. Indeed, the global meta-level activities are 
essential to the other activities of Algebra, in particular, to the meaning-building genera-
tional activities; otherwise all sense of purpose is lost. 
 Th e similarity between those activities that Kieran has named global/meta-level and 
Lew’s characterization of the kinds of processes that form the core of algebraic thinking 
is quite striking. Even if the algebraic reasoning of older students presupposes symbolic 
objects and transformation techniques — objects and techniques that may be beyond 
the range of experience of younger students — the point here is that algebraic reasoning 
involves both general mathematical processes as well as ways of thinking about specifi c 
mathematical objects and operations that are quite distinct from, say, arithmetic think-
ing or geometric thinking or statistical thinking. Cuoco, Goldenberg, and Mark (1996) 
speak of an algebraic habit of mind that includes representing and extending; Mason 
(1996), generalizing and specializing; Driscoll (1999), algebraic modes of thought such 
as doing-undoing and abstracting from computation. Love (1986), who includes as well 
‘handling the as yet unknown,’ emphasizes that, “becoming aware of these processes, and 
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in control of them, is what it means to think algebraically” (p. 49). But how does one 
go about helping students, especially younger ones, to develop such thinking? How does 
one, in the words of Mason (1996),  “awaken this awareness”? 

Promoting algebraic reasoning by appropriate tasks and classroom 
questions 

Based on their research on the development of algebraic thinking in primary school, 
Carpenter, Franke, and Levi (2003) have argued that “appropriately chosen tasks can (a) 
provide a focus for students to articulate their ideas, (b) challenge students’ conceptions 
by providing diff erent contexts in which they need to examine the positions they have 
staked out, and (c) provide a window on children’s thinking” (p. 14). However, they have 
also noted that, “although the selection of tasks can provide a context for engaging stu-
dents in examining their conceptions of the meaning of [whatever object or transforma-
tion] (…) , the nature of the discussion of the mathematical ideas is critical” (p. 18, em-
phasis added).
 Most teachers rely, for their teaching of algebraic content, on the activities that they 
fi nd in textbooks (e.g., Arbaugh & Brown, 2004; Kieran, 1992). However, the majority 
of textbooks off er little in the way of tasks for developing algebraic thinking, focusing as 
they do on manipulation. Th e more resourceful of Algebra teachers may turn to research 
journals or professional sources, but most do not have the time that is required to search 
out such resources to enhance the algebraic thinking of their students. Often, it is in the 
interstices of one textbook task and the next that teachers may attempt to knit together 
and off er to students some of the ideas related to algebraic thinking that have only been 
implicitly suggested by the textbook material. 
 Tasks and their relationship to learning have been a concern of mathematics educa-
tors for decades. Arbaugh and Brown (2004) remind us that Doyle (1983), for example, 
argued that “tasks form the basic treatment unit in classrooms” (p. 162) and that tasks 
“are defi ned by the answers students are required to produce and the routes that can be 
used to obtain these answers” (p. 161). Further, Arbaugh and Brown have described a 
set of criteria developed by the QUASAR Project (Stein, Smith, Henningsen, & Silver, 
2000) for categorizing mathematical tasks on the basis of the types of thinking (i.e., lev-
els of cognitive demand) that the task requires of students. Although the criteria do not 
relate specifi cally to tasks whose thrust is the development of algebraic thinking, they 
aim at supporting mathematics teachers in thinking about what constitutes worthwhile 
mathematical tasks. Among the cognitively higher-level tasks of the QUASAR categor-
ization are those that “require students to explore and understand the nature of math-
ematical concepts, processes, or relationships” (Smith & Stein, 1998, p. 348). Smith 
(2004) adds that teachers and curriculum developers ought to be encouraged to use 
problems that go beyond practicing routine procedures, that is, “problems that help stu-
dents to build mathematical connections and develop and apply mathematical concepts” 
(p. 96). Th e upcoming section of the article will attempt to unpack what it might mean 
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to “use problems that go beyond practicing routine procedures” in the context of alge-
braic thinking.
 Hoyles (2001) has argued that, while much of the research that is presented in pub-
lished articles does not say enough about the design of tasks, it is the teacher that shapes 
the learning that occurs not only through the organization of tasks and activities but 
also through the interactions that take place. Henningsen and Stein (1997) have simi-
larly voiced the idea that classroom-based factors can shape students’ engagement with 
mathematical tasks in both positive and negative ways. Even tasks that have been set up 
to encourage high-level mathematical thinking and reasoning can be thwarted by the 
classroom culture. Most notably, “the extent to which a teacher is willing to let a student 
struggle with a diffi  cult problem, the kinds of assistance that teachers typically provide 
students who are having diffi  culties, and the extent to which students are willing to perse-
vere in their struggle to solve diffi  cult problems” (Henningsen & Stein, 1997, p. 529) all 
tend to shape tasks and thereby infl uence the mathematical learning that occurs. 
 Th is article looks in particular at the kinds of questions that have been used in teach-
er- and/or researcher-generated tasks, and which have been geared specifi cally to foster-
ing the development of algebraic reasoning, as well as at the discussion questions that 
teachers and/or researchers have posed to students as they grapple with new algebraic 
ideas. Th e three cases that follow below cover a range of ages and a variety of themes in 
algebraic thinking. In presenting these case examples, which are drawn from the research 
of three diff erent researchers or research teams, I cite their work in greater detail than is 
normally done when referring to the research of others. I feel that this is necessary in or-
der to capture the essence of their task sequences/questions and wish to express my ap-
preciation of their tolerance in this regard.

Case 1: Th inking about equality in a relational way

Th e fi rst case is drawn from the research of Carpenter, Franke, and Levi (2003) and deals 
with developing children’s conception of the equal sign and a relational view of number 
sentences. Th e thesis underlying the work of the Carpenter research team is that if stu-
dents understand their arithmetic in such a way as to be able to explain and justify the 
properties they are using as they carry out calculations, they will have learned some of the 
critical foundations of Algebra. Tasks involving true/false and open number sentences 
(many drawn from the earlier work of Davis, 1964, in the Madison Project) were found, 
by the researchers, to be extremely eff ective, in that they:

• engaged students in discussions about the appropriate use of the equal sign;

• encouraged students to use relational thinking;

• fostered students’ reliance on fundamental mathematical properties when learn-
ing number facts, place value, and other basic arithmetic concepts; and 

• helped students generate conjectures. (Carpenter et al., 2003, p. 134)
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Th e example to be presented in this section made explicit use, according to Carpenter et 
al., of the following benchmarks. Th ese benchmarks, which served as a guide to the con-
struction of tasks, and their follow-up questions, related to the growth of children’s con-
ception of the equal sign:

1. Getting children to be specifi c about what they think the equal sign 
means represents a fi rst step in changing their conceptions. In order for 
children to compare and contrast diff erent conceptions, they need to be 
clear about what their conceptions are. Th is means getting beyond just 
comparing the diff erent answers to a problem like 8 + 4 = ® + 5.

2. Th e second benchmark is achieved when children fi rst accept as true 
some number sentence that is not of the form a + b = c. It may be some-
thing like 8 = 5 + 3, 8 = 8. 3 + 5 = 8 + 0, or 3 + 5 = 3 + 5.

3. Th e third benchmark is achieved when children recognize that the equal 
sign represents a relation between two equal numbers. At this point they 
compare the two sides of the equal sign by carrying out the calculations on 
each side of the equal sign.

4. Th e fourth benchmark is achieved when children are able to compare 
the mathematical expressions without actually carrying out the calcula-
tions. (Carpenter et al., 2003, p. 19)

In this example (Carpenter et al., 2003, Video Case 1.5), a second-grade USA teacher 
was working with a group of 6 pupils (about 8 years of age). Th ese pupils had all re-
sponded incorrectly earlier that week to the question as to the number that should go 
into the box of 8 + 4 = ® + 5. Some had thought it should be 17; the others 12 — both 
answers indicating fundamental misconceptions of the meaning of the equal sign. Th e 
teacher then met with this group of students a couple of times a week over the next four 
weeks. For each task, she would ask pupils what they thought the answer should be and 
listened while they justifi ed their own point of view or explained why they thought an-
other person’s answer was incorrect. For the fi rst set of tasks, pupils were asked whether 
the following were True or False (note that each task was in a form that students would 
have seen before):

3 + 5 = 8
2 + 3 = 7

58 + 123 = 115
10 + 7 = 17

Th e next set, which was designed to challenge them, contained the following tasks, which 
pupils were once again to decide whether they were true or false. Note that the fi rst two 
below were non-standard equations for these pupils and were designed to get them to 
begin thinking about such uses of the equal sign. Th e third equation provided a basis for 
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beginning to talk about the fourth — an equation with two items on the right hand side, 
but one where the zero was intended to play as transition agent to other diff erent equa-
tions with two elements on the right-hand side. Th e fi fth equation was one, however, for 
which the pupils could not reach consensus.

11 = 3 + 8
8 = 8

4 + 5 = 9
4 + 5 = 9 + 0
4 + 5 = 9 + 1

A few days later, the following set was presented to the group. Note that the sequencing 
in these tasks was very important — from a standard equation, to one with 0 added to 
the right-hand element, to one where the order of these two right-hand elements was 
inverted, to one where it was not the total that was featured on the right side but rather 
the same decomposition as was featured on the left side. Clearly this sequence was in-
tended to encourage awareness of both a “totaling” and a “comparison of elements on 
both sides” approach. Some pupils began to express as justifi cation of the truth-value of 
the equations the fact that both sides had the same total or not. 

2 + 6 = 8
2 + 6 = 8 + 0
2 + 6 = 0 + 8
2 + 6 = 2 + 6
2 + 6 = 6 + 2
2 + 6 = 8 + 1

Th e next sequence of tasks included open-number sentences for which the pupils were 
to suggest which number would go in the box. Filling the box in the second equation 
below was quite straightforward: a 5 would create exactly the same equation as the previ-
ous one, which was true. In fact, the fi rst equation also served as a basis for determining 
the truth-value of the 4th equation for one boy who stated that, if he took 1 from the 
fi rst 4 and added it to the second 4, both sides would “look the same” (i.e., the 4 + 4 be-
ing mentally manipulated to become 3 + 5).

3 + 5 = 3 + 5
3 + 5 = 3 + ®

8 = 8
3 + 5 = 4 + 4

Th e last sequence included the examples seen below. In justifying their thinking, several 
pupils were now comparing both sides and doing mental movements of numbers, such as 
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those just described above, and thus suggesting an attainment of the 4th benchmark men-
tioned earlier. Th ey had noticed new relations and adopted more powerful strategies. Th is 
thinking can of course be extended to dealing with equations such as 12 + 9 = 10 + 8 + c
and even 345 + 576 = 342 + 574 + d. Once students begin to realize that the equal sign 
signifi es a relation between numbers, they have, according to Carpenter et al., the con-
ceptual foundations for other aspects of algebraic thinking, such as properties, equiva-
lence, and making sense of equation-solving transformations. 

4 + 2 = 4 + 2
4 + 2 = ® + 3
4 + 2 = 3 + ®
5 + 3 = ® + 2

Th e crucial aspect of the tasks described in this case is their careful sequencing — a se-
quencing that was informed by the benchmarks listed above and that led students to 
question their conceptions of the use of the equal sign. Although I have described in de-
tail the tasks presented by this particular segment of the Carpenter team’s research pro-
ject, space constraints do not permit an equally detailed accounting of the nature of the 
interventions and follow-up questions that were posed by the teacher in her interactions 
with this group of pupils. While the tasks themselves were extremely important to the 
growth of these pupils’ understanding of equality and the use of the equal sign, so too 
was the way in which the teacher encouraged them to express their thinking and to try 
to justify it.
 In summary, the algebraic thinking that was encouraged by the tasks described in the 
Carpenter et al. (2003) study consisted in thinking about arithmetic operations as rela-
tions between numbers rather than as computational problems. Th is in turn allowed stu-
dents to treat the equal sign as other than a do something signal (Kieran, 1981), and to 
compare equalities with several terms on each side by decomposing or rearranging some 
of the number combinations, thereby demonstrating the numerical equilibrium of the 
equality. Students thus came to view number sentences in a manner that prefi gured later 
work with algebraic equations.

Case 2: Quasi-variable thinking

Th e second case study on the development of algebraic thinking is drawn from the re-
search of Fujii (2003) and his collaborator Stephens (2007). Fujii and Stephens have 
introduced young children to algebraic thinking through generalizable numerical ex-
pressions, using numbers as quasi-variables — for example, the – 49 and the + 49 in the 
number sentence 78 – 49 + 49 = 78, which is true whatever number is taken away and 
then added back. Finding that “generalizable numerical expressions can assist children to 
identify and discuss algebraic generalizations long before they learn algebraic notation” 
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(p. I–59), Fujii (2003) claims that these expressions “allow teachers to build a bridge 
from existing arithmetic problems to opportunities for thinking algebraically without 
having to rely on prior knowledge of literal symbolic forms” (p. I–62). Fujii and Ste-
phens (2001) have referred to this kind of algebraic thinking as quasi-variable thinking.
 Th ese two researchers have developed an elaborated task sequence based on the idea 
of quasi-variables, which they presented initially to pupils from grade 3 (8 and 9 years of 
age), and then extended to pupils in grades 5 to 8 (up to about 14 years of age), in Japan 
and Australia. Th e fi rst part of the series of structured questions is rooted in the notion 
that, if one can convert a given subtraction into a one that involves subtracting by 10, the 
subtraction is made easier. Generalizing the process whereby this conversion is obtained 
is the theme of the task, which the researchers have called Peter’s Method. 
 In their research, the task began with the fi rst set of questions below (Stephens, 
2007). 

Peter’s Method

Peter is subtracting 5 from some numbers. Peter says that these are quite easy 
to do. Do you agree?

37 – 5 = 32
59 – 5 = 54
86 – 5 = 81

But Peter says some others are not so easy, like:
32 – 5
53 – 5
84 – 5

Peter says, “I do these by fi rst adding 5 and then subtracting 10, like
32 – 5 = 32 + 5 – 10. Working it out this way is easier.”
Does Peter’s Method give the right answer? 
Let’s look at the other two questions (53 – 5, and 84 – 5). Can you use 
Peter’s Method on each of these?
Rewrite each question fi rst using Peter’s Method, and then work out the 
answer.

Pupils who could use Peter’s Method to work out the last of the task examples were then 
asked to generate some examples of their own and to explain why the method works. 
Th ey were subsequently requested to describe how they think Peter would have worked 
out the following: 73 – 6 = 73 + ®  – 10. If they could manage this, the task continued 
with the sequence displayed below.
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Peter says that his method also works for subtracting 7, and 8 and 9.
Can you show how Peter’s Method works for these three questions:
Re-write each question fi rst using Peter’s Method, and then work out the 
answer.

83 – 7, 
123 – 8, and 

235 – 9.
Can you explain how this method always works?

Fujii and Stephens (Stephens, 2007; Fujii & Stephens, 2008) have pointed out that not 
all of the students who were interviewed in the grade 3 classes were able to apply Peter’s 
Method; several needed to calculate each of the individual subtractions in order to ar-
rive at the fi nal diff erence and thus could not explain why Peter’s Method always worked. 
However, Fujii and Stephens argue that tasks such as Peter’s Method, just as was the case 
with the tasks used by Carpenter et al. (2003), off er an alternative for beginning to think 
about operations in a relational, rather than strictly computational, way. 
 In the second part of their study with students from the 5th to 8th grades, Fujii and 
Stephens fi rst presented the Peter’s Method task, and then followed it with extensions, 
which they called Susan’s Method. Susan’s Method involved larger numbers and some sym-
bolic representations so as to encourage thinking about equivalent expressions and gen-
eralization of the patterns encountered in these expressions. Th e fi rst extension of Peter’s 
Method was as follows.

Susan said it this way:
“Instead of writing 32 − 5,  32 − 6,  32 − 7,  32 − 8 and so on, I decided to 
write the symbol ▼ to stand for the numbers 5, 6, 7, 8, and so on.  
So, I wrote 32 − ▼ to represent all of these” (read as: “32 minus some 
number”).
Susan then says:
“So instead of 32 – ▼ (“32 minus some number”) Peter says 32 + ● − 10”
(read as: “32 plus some other number minus 10”).
Susan then says: “How does Peter fi nd the value of the second number ●? 
What do these two numbers add up to?
What can you say about ▼ + ● =    ?”
“Could ▼ (“the fi rst number”) stand for a fraction like 7½ or a decimal 
fraction like 5,2 ?”

Note that in the fi rst extension of the task, the researchers used a symbolic representation 
for the various numbers being subtracted. In this regard, Fujii and Stephens insist on the 
importance of referring to the symbols ▼ and ● as “numbers” and never as “triangle” or 
“circle.” In the second extension of the task, which follows, students were invited to ex-
tend the “subtraction of 10” method to the subtraction of 100, and beyond — but, fi rst, 
without symbolic representations: 
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Can we look at how Peter’s Method could be used for subtracting numbers 
like 95, 96, and 97?
Suppose Peter had 251 − 95, what do you think he might do to make it 
easier?
What would he do if he had 251 − 96,5?
What do you think he would do if he had 251 − 93⅓ ?

A third extension of Peter’s Method made use of symbols within a generalized relation in-
volving the boundary condition of 100:

Remember what Susan did before. Now, instead of writing sentences like 
251 − 95,  251 − 96,  251 − 97,  251 − 98, Susan again uses the symbol 
▼ to represent all of these. 
What do you think she would write? (Pause for students to write 251 − ▼.)
Susan then re-writes this new sentence 251 − ▼ to show how Peter would 
subtract numbers like 95, 96, 97, 98 and so on. 
She uses a second symbol ● to write 251 + ● ……..
Can you complete this sentence?
How is the value of the second number ● connected to the value of the fi rst 
number ▼ ?
What do these two numbers add up to?
What can you say about ▼ + ● =     ?
Could you use this reasoning to show how Peter would solve 251 − 83?

In response to the last question of the 3rd extension, students remarked that the two 
numbers totaled 100, in other words, that ▼ + ● = 100. A few students even comment-
ed that Peter’s Method could be applied to a wider range of subtractions that involved 
other than 10, 100, and even 1000. When asked how this might be expressed symbolic-
ally, one student from the 6th grade wrote “® – ● = ® + (▲ – ●) – ▲, saying any sub-
traction could be converted into “an easier subtraction” by choosing a “cleaner” number 
▲ (greater than the original number ● being taken away) adding the diff erence (▲ – ●) 
and then subtracting ▲” (Stephens, 2007).
 In designing this sequence of structured tasks, from the beginning of Peter’s Method 
through its three extensions, Fujii and Stephens (see Stephens, 2007) applied the follow-
ing considerations:

Th e fi rst step in looking beyond particular number sentences to seeing gen-
eralizable patterns in these sentences is helping students to leave number 
sentences in uncalculated (unexecuted) form. (…)

A second step is to avoid premature generalization, (…) making sure that 
students work with exemplifi cations of the underlying general relation-
ship. (…)
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A third step in developing students’ ideas of variable numbers is to acknow-
ledge the importance to students of the boundary conditions implicit in 
Peter’s Method and its three extensions [i.e., the 10 and the 100]. …

A fourth step [in developing students’ ideas of variable] is the use of rep-
resentative symbolic ‘terms’ [such as ▼ and ●], as a way of summarizing 
multiple numerical expressions that students have already met.

In bringing to a close this second case related to tasks designed to encourage the develop-
ment of algebraic thinking, I emphasize the concluding remarks made by Stephens in his 
2007 paper: “Th e potentially algebraic nature of number sentences (…) can provide a 
strong bridge to the idea of variable; [but] it can also strengthen children’s understanding 
of basic arithmetic.” I might hasten to add, however, that this “strengthening of children’s 
understanding of basic arithmetic” is not achieved by focusing exclusively on computa-
tion, but rather on students’ observing patterns that involve the uncalculated arithmetic 
operations of special relationships and their becoming aware of the structure underlying 
these generalizable patterns or forms. While for the younger students of this study, the 
mathematical objects that were at the heart of their reasoning were numerical, the gen-
eralizing that they engaged in gave their reasoning an algebraic cast — even if they were 
not yet ready to symbolize the generalized objects as variables. In this sense, the math-
ematical process of generalization can be viewed as one of the bridges between the arith-
metic and the algebraic worlds.

Case 3: Promoting algebraic reasoning by a focus on generalizable 
methods in the solving of word problems

Th e two previous cases have involved the use of sequenced, structured numerical tasks 
as vehicles for the development of algebraic thinking. Th e third case features word prob-
lems and the way in which a teacher’s questions, if well conceived, can encourage stu-
dents to make explicit their problem-solving approaches and to generalize them. Th is 
case is drawn from the research of Smith (2004). 
 Smith (2004) has argued that, despite the use of tasks designed to help students en-
gage in classroom discussions that focus on making conjectures and reasoning math-
ematically, simply using such tasks will not spontaneously promote the desired discus-
sions (see also Stein, Grover, & Henningsen, 1996). Teacher support is needed in order 
to help students engage in the reasoning that is intended by the tasks. In refl ecting on 
the videos of the Eighth-Grade TIMSS Video Study (Stigler et al., 1999), Smith (2000) 
noted that, in contrast to the mathematical tasks presented by USA teachers where only 
5 percent of tasks were implemented in a way that publicly discussed the mathematical 
relations inherent in them, 35 percent of the tasks deemed rich in mathematical rela-
tions were implemented by Japanese teachers in a way that promoted awareness of these 
relations.
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 Th e third case to be presented in this article focuses on the diff erent ways in which 
two teachers, one from the USA and one from Japan, introduced and implemented sim-
ilar problem situations. Smith (2004) consolidated her data for this research from the 
TIMSS Video fi ndings (Stigler et al., 1999). Smith has described, as follows, the man-
ner in which the USA teacher, Mrs. Jones, conceived of and presented the problem situ-
ation to her students. Mrs. Jones gave her students the Prom Dress task (see fi gure 1) 
because she thought it connected well with prior work done on writing equations and 
graphing lines and could be used to help students make a transition to systems of linear 
inequalities.

A few days ago, Veronica and Caroline were both asked to the prom. Th at 
night, they went out to shop for dresses. As they were fl ipping through the 
racks, they each found the perfect dress. Both dresses were priced at $80. 
Neither of them had enough that night, but each went home and devised 
a savings plan to buy the dress. Veronica put $20 aside that night and has 
been putting aside an additional $5 a day since then. Caroline put aside $8 
the day after she saw the dress and has put in the same amount every day 
since. Today, their friend Heather asks each girl how much she has saved for 
the dress. She says, “Wow! Caroline has more money saved.” How many days 
has it been since Veronica and Caroline began saving?

Figure 1 — Th e Prom Dress task (adapted from Smith, 2004)

When Mrs. Jones noticed that most of her students were having some diffi  culty in get-
ting started with the problem, she tried to help them by drawing three labeled columns 
on the chalkboard. While students continued to work on the problem, Mrs. Jones en-
couraged those who had already fi nished to fi nd another way to solve the problem. She 
later called upon various students to present their solutions. One student came forward 
and fi lled up the table of values on the chalkboard up to the seventh day, remarking that 
on the seventh day Caroline had more money saved than had Veronica. When Mrs. 
Jones asked if there were any other solutions, no one off ered any and the “discussion” 
(and the lesson) ended. Mrs. Jones was disappointed that she had not been able to get 
her students to think of any other methods.
 In contrast, Smith recounts how the Japanese teacher, Mrs. Hamada, was able to 
use a similar task (see fi gure 2) in a way that elicited the making of connections and the 
forging of more general strategies. Mrs. Hamada fi rst put the chewing gum task on the 
board. A student read the problem aloud. Th en Mrs. Hamada drew two rectangles on the 
board, one for Ken and the other for his younger brother. Th e students counted out 18 
circles and displayed them on Ken’s rectangle to represent the 18 packages of gum, but 
counted them by tens to make clear the number of pieces of gum that Ken had started 
with. A similar process was followed for fi lling the brother’s rectangle and announcing 
the number of his pieces of gum. At that moment, Mrs. Hamada asked students to try 
to solve the problem.      
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Ken and his younger brother enjoy chewing gum. One day, the boys go to the 
candy store and buy several packages of gum. Ken bought 18 ten-piece pack-
ages of gum, and his brother bought 24 fi ve-piece packages of gum. Every 
day, each boy fi nishes one whole package of gum. One day, they looked at 
how much gum each boy had left. Ken noticed that his brother had more 
pieces of gum than he had. How many days has it been since the boys bought 
the gum?

Figure 2 — Th e Chewing Gum task (adapted from Smith, 2004)

As Mrs. Hamada walked around the class to see which methods students were using, she 
encouraged them to explain their answers in a way that someone else might be able to 
understand what they had done. About halfway through the class period, she asked stu-
dents to present their work to the class. Th e fi rst group of students who came forward 
used a third rectangle and moved into it a ‘package of gum’ from Ken’s rectangle and a 
package from the younger brother’s rectangle, explaining that at the end of the fi rst day, 
Ken had 170 pieces of gum and his brother had 115. Th ey kept doing this until the 
younger brother had more pieces of gum left. Mrs. Hamada then summarized their ap-
proach: “You took one circle from each boy, counting down by tens for Ken and by fi ves 
for his brother until his brother had more gum. Th is is good, but it could take a long 
time when the numbers get bigger. Did anyone fi nd an easier way than this?” (Smith, 
2004, p. 101).
 Another group came forward and drew a table of values on the board with three col-
umns labeled:  Day, Ken, and Brother. Th e values they entered into this table showed 
that on the 13th day, the younger brother had more gum. However, Mrs. Hamada did 
not stop there. She continued with the following: 

Now I wonder if any of you thought of a way to show how many pieces of 
gum each boy had every day. Many of you may not have thought of this 
way we will do, but that is okay, we will try it anyway. I would like you to 
add some columns to Group 2’s table like this (headers: Day, Equation, 
Ken, Equation, Brother) and think of an equation Group 2 might have 
used to fi nd out how many pieces of gum each boy had. What would Day 
1 look like? (Smith, 2004, p. 102)

When one student from Group 2 responded that they took 10 away from 180 for Ken 
and 5 away from 120 for his younger brother, Mrs. Hamada fi lled this information in 
on the fi rst line of the table (180 – 10 = 170; 120 – 5 = 115) and asked the students to 
continue working on the task of completing the table. When some students appeared to 
be confused, she asked them to stop and look at the two numbers for a given day and to 
decide what computation they needed to do to get each number. If they found one way 
to do this, she asked them to think about whether there might be easier ways to do it. As 
the students continued working, Mrs. Hamada asked two students to put their work on 
the board (see fi gure 3). 
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Day Student 1 Student 2 Ken Student 1 Student 2 Brother
1 180 – 10 = 170 180 – 10 = 170 170 120 – 5 = 115 120 – 5 = 115 115
2 170 – 10 = 160 180 – 20 = 160 160 115 – 5 = 110 120 – 10 = 110 110
3 160 – 10 = 150 180 – 30 = 150 150 110 – 5 = 105 120 – 15 = 105 105
4 150 – 10 = 140 180 – 40 = 140 140 105 – 5 = 100 120 – 20 = 100 100
5 140 – 10 = 130 180 – 50 = 130 130 100 – 5 = 95 120 – 25 = 95 95
6 130 – 10 = 120 180 – 60 = 120 120   95 – 5 = 90 120 – 30 = 90 90
7 120 – 10 = 110 180 – 70 = 110 110   90 – 5 = 85 120 – 35 = 85 85
8 110 – 10 = 100 180 – 80 = 100 100   85 – 5 = 80 120 – 40 = 80 80
9 100 – 10 = 90 180 – 90 = 90 90   80 – 5 = 75 120 – 45 = 75 75
10   90 – 10 = 80 180 – 100 = 80 80   75 – 5 = 70 120 – 50 = 70 70
11   80 – 10 = 70 180 – 110 = 70 70   70 – 5 = 65 120 – 55 = 65 65
12   70 – 10 = 60 180 – 120 = 60 60   65 – 5 = 60 120 – 60 = 60 60
13   60 – 10 = 50 180 – 130 = 50 50   60 – 5 = 55 120 – 65 = 55 55

Figure 3 — Th e arithmetic equations produced by two students to yield the values
in the Ken and Brother columns (drawn from Smith, 2004)

Th e students of the class were then asked which of the equation-types (that of Student 1 
or that of Student 2) would be more helpful if the number of days got really large. Th ey 
decided that Student 2’s equation was the better of the two because it was more general-
izable. Th ey remarked: “All you need to know is how many days so you can multiply it by 
how many pieces of gum are in each package, ten or fi ve” (Smith, 2004, p. 102). Because 
they then ran out of class time, the teacher concluded the lesson by asking the students 
to think about a more general way of writing the equation that would give them the 
number of pieces of gum each boy had on whatever day. One general formulation that 
they could possibly have generated is: (starting number of pieces) -– (number of days) × 
(number of pieces chewed per day) = (number of remaining pieces).  
 Smith (2004) has pointed out that, while both teachers used similar problems to at-
tempt to engage their students in the development of important mathematical ideas, 
there were signifi cant diff erences in how they implemented the problem-solving situa-
tion and in how they orchestrated the conceptual extensions of student work. She has 
emphasized four of these diff erences.

• Th e Japanese teacher modeled the problem situation, whereas the US teach-
er modeled a solution method. Th e two teachers focused students’ attention 
on diff erent aspects of the problem. Mrs. Jones tried to help students get 
started by off ering a possible solution method, (…) Mrs. Hamada helped 
students ground their understanding in the problem situation by helping 
them visualize the context and then asking them to fi nd ways to resolve it.

• Th e Japanese students gave more detail in their explanations. When this was 
not spontaneous, the Japanese teacher specifi cally probed students to give more 
detailed and connected explanations. (…) Simply providing an answer was 
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not acceptable in Mrs. Hamada’s class: If students did not make connec-
tions, she asked questions that linked the pieces together. (…)

• Th e Japanese teacher helped students construct another solution method. … 
Mrs. Hamada was trying to get students to consider using a common vari-
able as a fi rst step to comparing the expressions. Similar to when she in-
itially introduced the problem situation, Mrs. Hamada off ered students a 
way to organize their information without directing students to use one 
particular method. (Th is could be seen when the two students constructed 
diff erent ways to generate equations.) (…) 

• In the Japanese lesson, the solution methods presented were analyzed and 
compared. … Mrs. Jones’s students presented only one solution method, 
allowing little room for developing mathematical connections across solu-
tion methods. Because Mrs. Hamada’s students presented more than one 
solution method, she was able to have them highlight mathematical rela-
tionships. (Smith, 2004, pp. 104–105)

One of the features of Mrs. Hamada’s implementation of the problem-solving task, 
which favored the evolution of students’ algebraic thinking — the presentation of and 
comparison between two methods — has also been reported in other research on Algebra 
teaching. For example, in the book, Connecting Mathematical Ideas with its two accom-
panying CDs, by Boaler and Humphreys (2005), the ways in which Mrs. Humphreys’ 
teaching encouraged the development of students’ algebraic thinking has been captured 
in video-taped lessons and interviews of small groups of students from her classes. In one 
of these interviews, students speak about the importance, from their point of view, of 
having several students in the class present alternate solution methods:

Interviewer: Does the teacher mind when you have these diff erent methods?

Student1: She loves it.

Student2:  Because then we all understand it, instead of her telling us one — 
cuz not all of us are going to get it.

Student1:  Th at way, if you don’t understand one of them, there’s a couple of 
others for you to.

Student2:  Yeh, there’s always, like three more, so you can get it. Like some 
people are visual, but then for other people that doesn’t help them 
at all. (Boaler & Humphreys, 2005, Video-tape Interview 1)

Th ese students stressed the value of seeing alternate methods as a means of understanding 
not only the problem situation itself, but also the connections between one approach for 
conceptualizing the problem and its solution and another. When problem situations are 
rich enough, there is an opportunity to include in classroom activity the discussion of 
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connections between representations, connections between solving approaches, and the 
encouragement of generalizable solving approaches. Nevertheless, such discussions do 
not automatically follow from the mere fact of using rich problem situations.
 However, just as important as the pedagogical technique of comparing two methods 
— perhaps even more so with respect to developing algebraic reasoning — is the form 
used in representing the two methods in Mrs. Hamada’s class: Sequences of operations 
that could lead to a generalization and the observation that one of the two sequences was 
more easily generalizable than the other. Th is was a key part of Mrs. Hamada’s problem-
solving lesson. Just as was the case with Peter’s Method in the previous task sequence, nei-
ther the fi nding of a numerical solution to the problem being posed, nor the setting up 
of a typical algebraic equation to model the problem situation was the ultimate focus of 
the task activity. Rather the aim was to arrive at a set of operations that could suggest a 
generalizable method, which could be symbolized, but did not have to be — either with 
▼ and ●, or with names of variables. Th us, the algebraic reasoning that was illustrated 
in these two problem-situation cases lay in thinking about and moving toward methods 
that could be generalized — In Case 2: generalizing the structure of the operations in-
volving the boundary conditions and the quasi-variables; in Case 3: generalizing the re-
lations among the changing values in the sequence of problem-solving operations and 
seeing the form that was implicitly suggested in that sequence. 

Closing discussion 

Th is article has presented three case studies of research designed to encourage the de-
velopment of algebraic reasoning in students from the primary to the early secondary 
levels. Details of the sequences of task questions, as well as the follow-up questions posed 
by the teachers in group or classroom discussions, were the main focus of the case de-
scriptions. What do these tasks tell us about the ways in which researchers and teachers 
seek to foster the growth of algebraic reasoning in students, especially those with little or 
no experience in symbolic Algebra?
 Th e striking aspect of the tasks seen in all three of these cases was the importance 
given to fostering in students an awareness, or noticing, of a certain form in the given 
sequence of examples and of generalizing that form. As was pointed out by Stephens 
(2007), leaving the number sentences in an uncalculated format was crucial in the task 
and problem-solving sequences. While the mathematical process of generalization was 
common to all three cases, there were other processes at play that were not common. If 
we consider the mathematical content that was part of the thinking that students en-
gaged in, some of the diff erences among the cases included modes of reasoning related 
to:

• Expanding the meaning of the equal sign to include equalities with operations on 
both sides — prefi guring the symmetric and transitive character of equality (Case 
1: Carpenter et al., 2003);
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• Developing a relational view of equality involving comparison of the two math-
ematical expressions without actually calculating — prefi guring the notion of a 
balanced algebraic equation and providing a meaningful basis for the later equa-
tion-solving transformation of performing the same operation on both sides of 
the equation (Case 1: Carpenter et al., 2003);

• Discerning special numerical relationships that were always true no matter what 
numbers, within certain boundary conditions, were used — treating numbers as 
quasi-variables that prefi gured the use of algebraic variables (Case 2: Fujii & Ste-
phens, 2008);

• Seeing sequences of solving operations in a general way — prefi guring the use of 
algebraic equations to model word-problem situations (Case 3: Smith, 2004).

Other examples of the kinds of algebraic reasoning that can be encouraged in students 
of various ages can be found in the research of, for instance, Blanton and Kaput (2005) 
with primary school students on the exploration of the properties of whole numbers, 
Radford (2006) with junior high school students on the generalization of fi gural pat-
terns, and Kieran and Drijvers (2006) with secondary school students on some of the 
more theoretical and technical components of algebraic reasoning related to equivalence 
and factorization. As is suggested by the three references just cited, the nature of algebra-
ic reasoning depends on the age and mathematical experience of the students, with the 
older students using letter-symbolic expressions/equations and algebraic transformations 
as the basic objects of their algebraic reasoning, rather than numbers and operations.
 In closing, let me emphasize that for the three cases presented in this article, the spe-
cifi c instances of algebraic thinking that emerged in students over the course of the vari-
ous research studies were all fostered by very-carefully developed task sequences and/or 
teacher/researcher questions. In that all these instances relied on generalization, it can 
without doubt be argued that generalizable sequences are a motor for, and an integral 
aspect of, the development of algebraic thinking, and that generalization has the pow-
er to raise students’ thinking from particular numbers, particular operations, and par-
ticular problem-solving approaches to a higher level that prefi gures variables, algebraic 
equations, and general solving methods. For the younger student not yet introduced to 
algebraic notation, these more general ways of thinking about numbers, operations, no-
tations such as the equal sign, and problem-solving methods can indeed be considered 
algebraic. As Lew (2004) has remarked, “Algebra is much more than a set of facts and 
techniques; it is a way of thinking” (p. 93) — but algebraic thinking need not necessar-
ily include “facts and techniques.” Th e tasks presented in this article suggest that one of 
the principal ways in which such algebraic thinking can be fostered is by structured se-
quences of operations that draw students’ attention to crucial aspects of form and its 
generalizability. 
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Resumo. Este artigo começa com uma apresentação dos diversos modos usados pelos investigadores 
para descrever o raciocínio algébrico em Matemática, com especial ênfase no primeiro ciclo do ensino 
básico. A partir daí, discute-se o papel das tarefas e da discussão de questões colocadas pelo professor no 
desenvolvimento do raciocínio algébrico dos alunos. Segue-se a principal parte do artigo onde se apre-
sentam exemplos recolhidos na investigação internacional sobre o raciocínio algébrico que ilustram de 
que forma as tarefas e as questões colocadas pelo professor podem ser apresentadas de modo a fomen-
tar o pensamento relacional, a consciência da forma e abordagens generalizaveis nos alunos do primeiro 
ciclo ao início do secundário. Os exemplos de tarefas que são discutidos, na sua globalidade, sugerem a 
importância de um aspecto central: sequências estruturadas de operações que conduzem a atenção dos 
alunos para aspectos cruciais de forma e sua generalização.
 Palavras chave: Tarefas que desenvolvem o raciocínio algébrico; Pensamento algébrico; Generaliza-
ção; Pensamento relacional; Forma em Early Algebra; Métodos generalizáveis.
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Abstract. Th is article begins fi rst with a presentation of the various ways in which researchers describe 
algebraic reasoning in school mathematics, with particular focus on that of the primary school level. 
Th is leads into a discussion of the role of tasks and discussion questions in the development of students’ 
algebraic reasoning. Th e rest of the article, which constitutes its main thrust, consists of examples drawn 
from the international research literature on algebraic reasoning that illustrate ways in which task and 
teacher questions can be set up so as to encourage relational thinking, awareness of form, and generaliz-
able approaches in students from the primary up through the early secondary levels. Th e task examples 
that are discussed all suggest the importance of one central feature: structured sequences of operations 
that draw students’ attention to crucial aspects of form and its generalizability.
 Key words: Tasks that develop algebraic reasoning; Algebraic thinking; Generalization; Relational 
thinking; Form in early Algebra; Generalizable methods.
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