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In this article, we address the challenge of supporting students in real-world problem 
solving as a vibrant part of their in-school experience of mathematics. We view this as 
a two-sided design problem. On the one hand, we argue that authentic problem solv-
ing experiences should capture important aspects of the nature of mathematical prob-
lem solving as it occurs in the real world, outside of school. Problem solving of this kind 
must go beyond simple applications of isolated concepts and procedures learned in a 
single chapter of a textbook. On the other hand, we argue that problem-solving experi-
ences should serve to motivate reflection on core disciplinary ideas, representations, and 
techniques. Learners need curricular support to unpack, make sense of, and extend the 
insights and intuitions that have allowed them to solve problems. Thus, we advocate 
activities that extend problem-solving session, taking students beyond particular real-
world problems to explore the generality and mathematical significance of their solu-
tions. Moreover, the problem-solving experience itself should serve to initiate lines of in-
quiry in the classroom that develop the idiosyncratic ideas and questions that have arisen 
in problem solving toward more thorough, formal, and standard shared understandings 
in the classroom. We recognize that it is a significant challenge to fulfill both of these re-
quirements. However, learning environments that achieve this goal can offer powerful 
opportunities for learning and research, provoking and illuminating two key facets of the 
learning process: the construction and formalization of knowledge structures.
 To address the real-world side of our proposition, we consider powerful aspects of 
mathematics and problem solving as they are experienced in authentic contexts outside 
of school. We show that the gap between this live and authentic practice of mathemati-
cal problem solving and the typical experience of school mathematics is wide and, in 
fact, growing wider with changes in the world of work over the last thirty years (Darling-
-Hammond, Herman, & Pelligrino, 2013; National Governor’s Association Center for 
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Best Practices and Council of Chief State School Officers, 2010; Wolfram, 2010, 17:15). 
We outline features of real-world problem solving and aspects of the mathematics used 
in such situations, as a way to indicate the magnitude of the challenge we are facing. 
Then, we describe the design and rationale of Model-Eliciting Activities (MEAs), a type 
of learning environment designed to engage learners in simulations of real-world prob-
lem solving of the kind described above.
 To address the in-school side of our proposition, we show how MEAs can be em-
bedded in flexible curricular sequences, called Model Development Sequences (MDSs), 
which offer learners opportunities to reflect on, unpack, refine, and extend the ideas that 
they have developed in MEAs — opportunities too often neglected in real-world prob-
lem-solving settings (Lesh et al., 2003; Zawojewski et al., 2013). We review research 
on MDSs and we identify a need for further work to refine design and implementation 
principles to guide their use. In particular, recent research has sought to understand the 
need for MDS activities in particular modeling situations (Brady, Lesh, & Sevis, 2015), 
and to study the effects of engaging in course-length implementations with them (Lesh, 
Carmona, & Moore, 2009). 
 As a contribution to the work on elaborating principles behind the MDS construct 
as a means to extend problem-solving as a core element in course-long engagements in 
modeling, in the second half of this article we present a detailed episode from an ongo-
ing design study. This episode involves work by the first author with in-service educators 
in a Masters program in Mathematics Education at a public South American university. 
We describe instructional decisions he made around a single MEA and how he respon-
sively assembled an MDS sequence for the course through a process of reflection-in-
practice (Schön, 1983). Moreover, we show how this process of elaborating a particular 
MDS illuminated design principles for structuring MDSs in general. We present a set of 
six principles that resulted from discussing this episode among the author group and we 
identify resonances between this work and intuitions that we have formed over a long pe-
riod of working with MDSs. Finally, we close by arguing that these curricular sequences 
can offer a powerful combination of real-world problem solving experience on the one 
hand, and rich opportunities for students to reflect on and formalize knowledge on the 
other. 

Motivation: Mathematical Problem-Solving Outside of School

In recent decades, the experience of mathematical problem solving outside of school has 
changed in fundamental ways (Lesh, Hamilton, & Kaput, 2007). These shifts, we be-
lieve, can and ought to be reflected in the kinds of mathematical problems and model-
ing activities that we present to learners within the school curriculum. Unfortunately, the 
typical experience of mathematics problems in school is out of step with these realities. 
In this section we describe this mismatch, focusing on two of its facets — the mathemat-
ical tools involved, and the problem-solving practices employed. Finally, we introduce a 
design approach to address these issues.
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Mathematical Tools for Real-World Problem Solving

The contemporary world of work is experiencing rapid changes, which affect the math-
ematical tools needed to model its most important problems. In particular, the follow-
ing trends have had significant impact: on one hand (a) an increasingly pervasive under-
standing of the world in terms of large data sets whose patterns indicate connectivity, 
feedback, emergence and complex systems as opposed to simple input-output relations, 
and on the other hand, (b) lowered barriers for students to participate in creating, ex-
changing, and critiquing computational representations of these complex systems and 
emergent phenomena. Together, these factors are associated with increasingly dominant 
disciplinary theories or paradigms (Kuhn, 1970) for thinking about and explaining cau-
sality, across disciplines. We argue that these features present fundamental challenges 
and opportunities to the enterprise of school mathematics in fulfilling its role to prepare 
learners to participate effectively in discourses about causal relations. 
 In general, our experience of the world is characterized by an ever-more rapid flow 
of information, a high degree of connectivity, and extreme interdependence. Computa-
tion is pervasive and mediates near-instantaneous interactions among the ‘nodes’ of a 
connected global network. Popular texts (e.g., Barbasí, 2002; Watts 1999; 2004) have 
made the general public aware of an accelerating trend in mathematics and the sciences: 
the tendency to view core scientific phenomena as the emergent effects of the operation 
of complex systems (c.f., Wilensky, Brady, & Horn, 2014). Although certainly such ap-
proaches had previously been used by researchers in the mathematical, physical, chemi-
cal, and even the biological sciences (e.g., Motter & Albert, 2012; Piela 2014; Stamata-
kis, 2006), a fundamental change has occurred in that complex systems are also seen to 
characterize the relations among “players” in human and social systems (e.g., Axelrod, 
1997; Epstein, 1999, 2012, 2014; Gilbert & Troiztsch, 2005; Miller & Page, 2007). 
Along with the rise of the Internet (and often using the Web as a key example), the re-
lations among individuals, countries, companies, and other institutions are increasingly 
framed in terms of networks of relations. These networks express the structure of rela-
tions of communication, influence, and causality; and they often exhibit feedback loops, 
redundancy, and many-to-many relations. All of these features require STEM profes-
sionals to reconceptualize tools that they have learned in traditional school instruction to 
apply them flexibly and creatively. 
 For instance, in the mathematics of change, capturing the essence of relationships of 
causality and co-variation, the notion of function is central. However, the modeling tool-
kit developed in most students’ experience of high-school mathematics consists mainly 
of analytic functions, and in particular, combinations of polynomial, trigonometric, and 
exponential/logarithmic functions. Furthermore, these functions are generally studied in 
situations of “simple” causation — that is, in situations where a single input produces a 
single output, with no systemic feedback. In the complex, connected world we have de-
scribed, functions serve as useful building blocks for modeling aspects of systems, within 
specific regimes, but they must be conceptualized in a larger and more flexible context to 
describe systems as a whole. 
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 Fortunately, our second point about the world of today offers a means to enable stu-
dents to make the shift to creative and flexible use of mathematical tools. For the study of 
change in complex interdependent relationships, the traditional apparatus includes sys-
tems of differential equations. However, computational systems modeling environments 
such as STELLA and VenSim (e.g., Roberts et al., 1997; Shii & Gill, 2005), and agent-
based modeling environments such as NetLogo (Wilensky, 1999), StarLogo TNG (e.g., 
Klopfer et al., 2009), and Repast (Collier, 2003) allow learners to approach such systems 
without the advanced apparatus of differential equations. 
 In general, technical and other barriers to participating in the discourse on complex 
causation are lowering. This certainly does not guarantee equitable access to powerful 
tools, however, and this is a core challenge for schools to address. Nevertheless, barriers to 
accessing information and even to participating actively in creating and publicly sharing 
computational models of complexity are rapidly disappearing. In addition to the mod-
eling environments above, key tools such as spreadsheets and graphing tools of various 
kinds have now been expressed in free and open-source software. The price of compu-
tational hardware has likewise continued to decrease. Thus, it is increasingly feasible to 
make meaningful changes in traditional educational approaches across a diverse range of 
settings and contexts, even when these innovations depend on access to computational 
tools. This state of affairs identifies an opportunity and an obligation for us to envision 
a school mathematics that is responsive to the need-to-participate in the discourse about 
emergence and complex causation.
 Most of all, today’s mathematical problem solving requires that students have the ca-
pacity to use functions and other mathematical tools as means for conceptualizing the 
world as framed by the problem. In authentic problem settings, mathematical forms are 
not simply dressed up in thin disguises to be discovered easily by learners. Instead, when 
problem solvers apply mathematical tools to solve such problems, they engage in a radi-
cally interpretive process. They tentatively impose mathematical structures on the world 
and iteratively refine these structures to improve the viability of the match. This process 
both requires and fosters a high level of fluency with the constituent mathematical tools. 
It raises rich and fundamental questions both about the nature of modeling and math-
ematical interpretation and about the deeper functioning of the mathematical tools and 
structures themselves.

Mathematical Practices for Real World Problem-Solving 

Alongside the mismatch between the mathematical tools needed for modeling in authen-
tic settings and the experience of these tools in school, we also see fundamental mis-
matches in the practices used to attack problems in and out of school. In particular, we 
identify below five basic features of authentic problem settings as experienced by profes-
sionals in mathematically rich domains beyond school. There is an increasing recogni-
tion that these features of problem-solving practice are fundamental, in that they have a 
significant impact on the kinds of thinking that problem-solvers engage in. 
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 Working in Groups. While not all important problem-solving work in the real 
world is done in collaborative groups, most problems that pose significant challenges 
to an organization do require solutions that tap into varied areas of expertise. So, if the 
problem goes beyond a simple application or minor adaptation of an organization’s prior 
experience, a team will generally be assembled to conceptualize or execute the work. 
 Focusing on the Needs of a Definite Client. Realistic problems almost always are 
situated with respect to a particular client who has a definite need. The client’s context 
fundamentally shapes not only the criteria by which solutions are judged, but it also 
conditions a myriad of operational decisions. Depending on the ways in which the solu-
tion will be used by this client, problem solvers must be sensitive to which kinds of er-
rors might be acceptable or unacceptable; what degree of precision is needed or appro-
priate; what kinds of input measurements or calibrating measurements are available; and 
so forth. Rather than merely offering adjustments or adaptations to a context-free solu-
tion, these factors can often fundamentally shape the solution and the problem solving 
process.
 Addressing Challenges in Measurement and in Operationalizing Constructs. In 
realistic situations, knowledge of the problem situation may be incomplete or based on 
data sources that must first be interpreted in order to be applied to the problem. Even 
more importantly, qualities that the client wishes to optimize may be inadequately or in-
completely specified or operationalized. For example, in forming a team of salespeople 
for a new assignment, a client may wish to optimize revenue production. However, even 
if the salespeople are to be drawn from a pool of existing employees for whom reliable 
historical data is available, there is a challenge in creating an operational construct of 
“salesperson productivity” and using data from historical contexts to predict this value of 
productivity in the new context. Different salespeople are likely to have performed better 
or worse in different conditions, and many will have demonstrated positive or negative 
trends in their performance over time. Different operational definitions of “productiv-
ity” may lead to significant changes in the ranking of candidates and thus in significant 
changes in the proposal to the client.
 Providing Solutions that Address Uncertain or Changing Conditions. In many 
authentic problem-solving settings, groups identify key conditions or parameters that 
may trigger radical changes in the solutions required. Moreover, in some cases, the values 
of these conditions or parameters may be unknown or may even vary within the client’s 
decision-making context. Thus, in addition to coordinating a variety of mathematical 
tools and structures in their solution, teams may need to specify conditional logic for ap-
plying one solution or another. For instance, they may recommend that “under the fol-
lowing conditions or assumptions, apply procedure #1, but under contrary conditions, 
apply procedure #2.” In particular, such ideas go beyond specifying the domain of solu-
tion functions: the thinking involved is significantly more sophisticated, though clearly 
related.
 Being Responsive to Key Trade-Offs. Although this feature is related to conditional 
thinking, it emphasizes criteria by which different viable solutions will be compared or 
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evaluated. It is common in engineering contexts that solution strategies are judged not 
only for the functional qualities of an end product but also according to how they bal-
ance “non-functional” trade-offs between, for example, cost and time (for a product), or 
complexity and precision (for a process). As with the other features described above, we 
argue that these considerations are intrinsic to the modeling and problem-solving pro-
cess. They are not concerns that can simply be added to an abstractly formulated so-
lution: rather, they play fundamental and constitutive roles in forming and evaluating 
solutions.

A Design Approach to Creating Problem-Solving Activities that Bridge these Gaps

It is a significant challenge to create in-school situations that capture core elements of the 
practice of problem solving outside of school, as described above. Fortunately, a tradition 
of educational design research has been working on this problem for over thirty years. 
Researchers adopting a Models and Modeling Perspective (M&MP) in mathematics ed-
ucation (Lesh, 2003a; 2003b; Lesh & Doerr, 2003) have engaged in research to illumi-
nate the nature of knowing and learning in authentic problem-solving characteristic of 
real-world settings. A key requirement of such settings is that they challenge learners to 
engage in original mathematical work (i.e., to produce mathematical interpretations and 
constructions that are new to them), rather than being simple applications of mathemat-
ics learned from an authoritative source (e.g., their textbook). Iterative design research to 
create such learning environments has led to the development of a genre of materials and 
activities, known as Model-Eliciting Activities, or MEAs (Doerr & English, 2006; Lesh 
et al., 2000; Hjalmarson & Lesh, 2007; Lesh & Doerr, 2003). In MEAs, students are 
presented with authentic, real-world situations where they repeatedly express, test, and 
refine or revise their current ways of thinking as they endeavor to generate a structurally 
significant product — a model — comprising a conceptual structure for interpreting and 
solving the given problem (Lesh & Doerr, 2003). These MEA activities give students the 
opportunity to create, adapt, and extend scientific and mathematical models in inter-
preting, explaining, and predicting the behavior of real-world systems. 
 An Example MEA: Summer Jobs. The Summer Jobs problem (Chamberlin, 2005; 
Lesh & Lehrer, 2000) included as Appendix A, often serves as an initial MEA experience 
for learners. In particular, it was the first MEA used with the group of South American 
high school teachers whose work is described later in this article. 
 In the problem, a table of data is given showing information about a sample of work-
ers in an amusement park during the past summer. The group’s challenge is to develop a 
way to decide which workers should be hired full time, part time or not at all for the fol-
lowing summer. The information given about the past summer includes: (a) the amount 
of money earned by each worker during June, July, and August, and (b) the amount of time 
that each worker worked during periods where park attendance was “slow,” “steady,” and 
“active”. Thus, solutions to the problem often involve developing some kind of index of 
worker productivity, and taking the attendance conditions of the park into account. 
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 A key outcome of the whole-class discussion of the MEA is the notion that when 
such a construct is operationally defined, a variety of reasonable definitions may be pos-
sible. Though none of these are objectively “correct” or “incorrect,” all of them involve 
different assumptions and may lead to markedly different conclusions or judgments. In 
particular, in real life situations where statistics procedures are useful, results often vary 
significantly depending on how constructs such as “averages” are operationally defined. 
For example, in two independent sessions, 98 Ecuadorean high school teachers engaged 
with this problem in groups of 3–5. Each group produced a solution for the client along 
with an explanation of their rationale and how their procedure could be applied not only 
to the particular set of salespeople given but also more generally to any group for whom 
similar data was available. A total of 27 groups submitted solutions, with judgments 
shown below:

Figure 1. Data from the “hiring boards” for Summer Jobs, showing the judgments of 27 groups 
of teachers at a conference in Ecuador. In the diagram “C” indicates a decision to hire the 

worker full time (tiempo completo) while “P” represents part time (tiempo parcial).

For both MEA sessions, a “hiring board” was displayed at the front of the classroom and 
filled in by the groups as they finished formulating their solutions and writing their let-
ters to the client. The visible disagreement in judgments provoked rich and vibrant dis-
cussions of groups’ strategies. It quickly became clear that differences in results were not 
due to errors in calculations, but rather to mathematically different operational definitions 
of productivity, as well as different procedures for dealing with anomalies in the data 
(such as workers who did not participate in the business in a given month or who worked 
significantly more or fewer hours than others). Observing the diversity of solutions and 
the conflicts in judgments was an important experience for the participants. Although 
some of the teachers in the group expressed discomfort with the idea that an “opti-
mal strategy” could not be definitively identified, the validity of different approaches to 
weighing and combining the available data came through in the course of the discussion. 
 MEAs like the Summer Jobs problem present learners with situations in which fa-
miliar mathematical procedures and constructs are both applicable and insufficient. That 
is, on the one hand such problems are accessible to learners from a wide range of levels 
of ability, experiences, or knowledge (from upper elementary school through graduate 
school). On the other hand, learners encountering these problems find that they have 
no ready-made “correct” solution process they can apply to address the client’s situation. 
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As a result, learners engage in solution-construction processes that put them off balance 
in comparison to typical school-mathematics tasks. Moreover, this uncertainty is part of 
the design of the MEA, helping to illuminate fundamental conceptual issues associated 
with the core mathematical structures involved. 
 Questions that are Frequently Raised about MEAs. In addition to stimulating vi-
brant discussions among the teachers about their solutions, the experience describe above 
also provoked important questions about the nature of MEAs as a type of problem, and 
how they could be implemented in schools. We respond to three of these basic questions 
here:
 Question 1: How can we give problems to students where there is no single “best” or 
“optimal” solution? For Summer Jobs and other MEAs, the products that students de-
velop are not simple “answers.” In fact, although groups produce a solution for the client, 
the term “solution” may fail to capture the breadth of the conceptual structure that they 
create. Here as in other MEAs, groups develop tools and procedures, along with fram-
ing assumptions and interpretations, which are intended to be appropriate and useful to 
a specific client for a definite purpose. To the extent that the client and her problem are 
clearly specified, groups are able to judge for themselves whether their current response to 
the problem is adequate, effective, and sufficiently generalizable to be useful. This is ab-
solutely crucial: otherwise, groups see the instructor as the audience and judge of their 
solutions, and the learning situation collapses into yet-another-school-math-problem. 
 One important note in connection with this question is that it is not necessary for the 
client and her problem to be “completely” specified. In fact, in Summer Jobs, much of 
the disagreement among operational definitions of worker productivity comes from nu-
ances in groups’ judgments about when part-time workers will be used; how predictable 
are the variations in the park’s activity level; and so forth. But it is reasonable that the cli-
ent herself may not have thought these matters through before posing the problem to her 
“consultants.” This type of incompleteness in the client’s specification simply indicates 
how a model-rich response to a problem illuminates the problem situation itself. After 
engaging with multiple MEAs, more sophisticated groups of students begin to incorpo-
rate multiple scenarios into their solutions, identifying decisions that the client should 
make or additional information that he or she should collect before choosing among the 
solutions or procedures that they present.
 Question 2: Why are MEAs not more targeted to single topics as found in textbooks 
or curricula? As we have argued above, one of the main features that distinguish “real life” 
problems from “typical school” problems is that they usually involve constraints. This is 
because clients tend to care about partly conflicting factors such as costs and benefits, 
risks and gains, and so on. And, this means that developing a solution often requires in-
tegrating ideas and procedures drawn from more than a single textbook topic area. From 
an educator’s perspective, an advantage of these kinds of problems is that they support 
learners in making connections between different areas of knowledge and among various 
“big ideas” of a course. These types of connections reflect how knowledge is held togeth-
er in action — in constructing solutions — as opposed to the types of connections that 
drive the logical presentation of ideas in a syllabus or a textbook.
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 Question 3: Are MEAs “open-ended” problems? Our answer to this question is “Yes 
and No.” On the one hand, MEAs are open-ended in the sense that they neither have a 
single “correct” answer, nor do they lead students through the process of constructing a 
target conceptual system devised by the MEA author. Instead, they provide opportuni-
ties for learners to adapt and refine their own thinking, leading to a degree of diversity 
of solutions among different groups in a given class. On the other hand, there are several 
senses in which MEAs are not open-ended problems. First, the needs of the client pro-
vide a clear means of judging student responses, so that MEAs are certainly not “any-
thing goes” problems. Second, in most MEAs the problem situation is sufficiently specif-
ic that relatively small set of basic mathematical constructs will be useful in formulating 
responses. Thus, it is fairly certain that the solutions of different groups will be compara-
ble, enabling groups to extend their learning by reflecting on each other’s work and ratio-
nales. Finally, MEAs are extremely compact in terms of the time that they require. His-
torically, MEAs were limited to a single class period, because researchers wanted to use 
them to track the development of students’ ways of thinking. If an activity took longer 
than a single class session, researchers would lose the ability to observe students’ changes 
in thinking in the time between sessions, leading to incomplete accounts of the process. 
When MEAs began to be used for their instructional value, compactness became an asset 
for a different reason. Many versions of problem-based or project-based learning attempt 
to provide experiences of real-world problem solving, but most of these formats require 
weeks of class time or longer. In contrast, MEAs and the extension materials that accom-
pany them can be arranged flexibly by teachers to meet a variety of instructional goals.

Principles Guiding the Design and Implementation of MEAs

As we have seen, MEAs were originally designed as environments for research into what 
it means to “understand” important concepts in the K-12 mathematics curriculum, and 
their goal was to provide documentation and evidence to study the development of ideas 
in classroom groups. They were designed so that students would clearly recognize the 
need to develop specific constructs — without dictating how they would think about rel-
evant mathematical objects, relationships, operations, patterns, and regularities. Along 
with a collection of particular MEA activities, the early M&MP community outlined six 
key design principles for MEAs to meet these goals (see, e.g., Doerr & English, 2006; 
Lesh et al., 2000; Hjalmarson & Lesh, 2008):

1. Personal Meaningfulness. Is the problem situation realistic, in the sense that a so-
lution would be of genuine interest to a client? Is the problem space sufficiently 
open to ensure that different groups of students are able to pursue diverse solution 
paths based in their own unique personal knowledge and experiences? 

2. Model Construction. Does the problem truly require the new construction, modi-
fication, adaptation, or extension of a model in order to be solved? Does the prob-
lem engage with deep mathematical structures and regularities, rather than engag-
ing mainly at the surface level?
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3. Self-Evaluation. Are the client’s needs and constraints sufficiently clear that stu-
dent groups can judge for themselves the usefulness or adequacy of proposed 
solutions? 

4. Model Generalizability. Do the models that are created in the activity apply only 
to the specific situation of the problem, or are they likely to be generalizable to a 
broad range of situations? 

5. Model Documentation. Will student responses to the problem explicitly reveal 
their characteristic ways of thinking about the situation? Will they provide clear 
evidence about the mathematical objects and relations they have engaged with in 
solving the problem?

6. Simplest Prototype. Is the problem situation as simple as it can be, while still meet-
ing the other design principles? Does the experience of the MEA “stick” with stu-
dents so that they are able to use it as a lens for viewing future problems that fea-
ture similar mathematical structures?

The notion of a model is fundamental to both research and teaching with MEAs. For our 
purposes, models are:

…conceptual systems (consisting of elements, relations, operations, and 
rules governing interactions) that are expressed using external notation sys-
tems, and that are used to construct, describe, or explain the behaviors of 
other system(s) — perhaps so that the other system can be manipulated or 
predicted intelligently (Lesh & Doerr, 2003, p. 10).

That is, models are sense-making units, interpretive systems that human beings con-
struct, use, and re-use to conceptualize the world around them. Mathematical models are 
models of this kind that emphasize structural patterns in the world. 
 When groups of learners encounter novel problem situations with specifications that 
demand a model-rich response, they must develop a shared understanding of the nature 
of the problem situation: a need that provokes the construction of shared models. Then, 
in developing a solution that takes account of the situation and meets the given speci-
fications, the group’s models are observed to grow through relatively rapid cycles of de-
velopment. These cycles are iterative, in that learners express, test, and revise their ideas, 
adjusting them incrementally to improve the fit and viability of their solutions relative to 
the client’s specifications. These model-rich problems are therefore settings where signifi-
cant constructive activity occurs and where this activity generates an auditable trail of the 
progress of the group’s thinking. These are powerful features of MEAs both for creating 
educational activities and for conducting research into learning.
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MEAs and the Affordances of Classroom-Based Learning

We have argued that MEAs are a time-efficient way of providing students with experi-
ences that have important connections with mathematical problem-solving as it occurs 
in the real world outside of school. In presenting this case, we have run the risk of sug-
gesting that real-world problem-solving contexts provide superior learning environments 
to those which can be achieved in schools. This is not our intention. In fact, we argue 
that classroom settings are positioned to offer significantly more powerful opportunities 
for reflection and unpacking of problem-solving than are typically experienced in the 
world of work. While “post-mortems” on solutions are in fact a part of many real-world 
problem-solving efforts, we argue that the classroom environment is particularly condu-
cive to a deep unpacking, extending, and reflecting both on problem-solving processes 
and on the nature and applicability of the basic tools that a team has used. The result is 
that problem-solving in school can stimulate curiosity and a sense of the need for basic 
fluency and effectiveness in operating with elements of the mathematical modeling tool-
kit. This is an extremely valuable contribution, and we argue that it can feed powerfully 
back into the learner’s problem-solving effectiveness.

Supporting Model Development: Reflecting, Unpacking, and Extending

To capitalize on this opportunity, recent M&MP research has investigated ways in which 
MEAs can be embedded within larger instructional sequences, called Model Develop-
ment Sequences, or MDSs (Lesh et al., 2003). MDSs offer classroom groups opportu-
nities to unpack, analyze, and extend the models they have produced in MEAs, as well 
as to connect their ideas with formal constructs and conventional terminology. This un-
packing work helps to ensure the lasting retention of concepts at the level of generality 
required to apply them flexibly in novel situations. MDS activities also set the stage for 
the critical connection between conceptual development and procedural knowledge that 
is required for students to achieve well-rounded mathematical competence. 
 In particular, a given MDS may include the following, in addition to one or more 
MEAs:

• Reflection Tool Activities (RTAs), which support students in stepping back from 
their modeling processes and reviewing this work as critical observers of both in-
dividual and group modeling behavior. M&MP research expects that when stu-
dents interpret situations mathematically, the interpretation systems they engage 
are not purely logical or analytical in nature. Rather, they also involve attitudes, 
values, beliefs, dispositions, and metacognitive processes. Moreover, the M&MP 
does not treat group roles or group functioning as if these were fixed student at-
tributes that determined their behaviors. Instead, students are expected to devel-
op a suite of problem-solving personae that they learn to apply purposively as the 
situation demands. A wide range of reflection tool questionnaires, formats, and 
guides have been developed to emphasize different dimensions and objectives in 
students’ process-unpacking work (c.f., Hamilton et al., 2007).
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• Product Classification and Toolkit Inventory Activities, in which students cat-
egorize the kinds of thinking involved in their solutions to MEAs. These activities 
also help students continue the work of abstraction, identifying links among dif-
ferent solutions to MEAs and between these solutions and the “big ideas” of the 
course. These activities can involve graphically representing knowledge and links 
between knowledge elements in various ways.

• Model Extension Activities (MXAs), often involving dynamic mathematics 
software, in which the class extends and formalizes key elements of mathematical 
thinking that have appeared in student solutions. And, finally,

• Model Adaptation Activities (MAAs), which allow students to generalize ideas 
and techniques developed in MEAs, applying them to situations calling for simi-
lar performances. These activities can also provide smaller-timescale modeling 
scenarios that exercise concepts students have explored in other components of 
the MDS. They may be pursued individually or in small groups, depending on 
the nature of the task and the teacher’s instructional or assessment goals.

These activity types were formulated over the course of years of iterative design research 
involving MEAs. MDS sequences deploying such activities are conceived as highly mod-
ular, to be responsive to the needs and intentions of teachers. Importantly for ongoing 
research into MDSs, this flexibility requires teachers to make consequential instruction-
al decisions, creating opportunities for multi-tier design based research (Lesh & Kelly, 
2000, Doerr & Lesh, 2003). Within this framework, a first tier involves the primary 
modeling activity of students engaging with MEAs and MDS materials. In parallel, a sec-
ond tier, involves teachers as they develop and articulate their conceptions of their stu-
dents’ learning. These conceptions are teacher-level models of student thinking, and the 
adaptation and implementation of MDSs can be treated as a teacher-level MEA. Finally, 
at the researcher level, a third-tier modeling activity involves researchers openly reflecting 
on their own models — their conceptions of the development of ideas among student 
groups, and of the teacher’s patterns of observation and response to those students, along 
with the researcher’s own perceptions and actions as participant-observers in this context.

The Need for Principles to Guide the Design and Implementation of MDS Activity 
Sequences

Thus, while MDS sequences are designed to be flexibly adapted by teachers, the instruc-
tional decisions involved are consequential, and a repository of MDS activities is not 
simply an a la carte menu of materials to choose from. Historically, the M&MP research 
tradition has used principles of design and implementation to maintain a balance be-
tween flexible adaptability on the one hand and principled instructional decision-mak-
ing on the other. In the discussion above, we have presented the six principles for de-
signing and implementing MEAs. These principles were developed iteratively through 
collaborations between researchers and reflective practitioners over several years of im-
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plementation work (Lesh et al., 2000; Lesh & Doerr, 2003). In an effort to articulate a 
parallel set of principles for orchestrating MDSs, we have been engaged in an extended 
design research effort (c.f., Brady, Lesh, & Sevis, 2015). The remainder of this article de-
scribes one implementation episode from this work, along with the provisional set of de-
sign principles that emerged from analyzing that episode within the author group.

An Implementation Episode from Design Research on MDS Sequences

In this section, we present an implementation episode extracted from an ongoing design 
research project focused on Model Development Sequences. We begin by laying out the 
methodology of the project and the research questions that are advanced by this episode. 
Next, we describe the implementation and the in-the-moment decisions made by the 
first author in developing an MDS responsive to the needs of the class. Finally, we de-
scribe the MDS design principles that emerged from reflecting on this episode with the 
author group as a whole. 

Methodology and Research Questions

The implementation episode described here is extracted from a broader line of work that 
adopts a design research methodology (Clements, 2007; Cobb, Confrey, diSessa, Leh-
rer, & Schauble, 2003; Lamberg & Middleton, 2009; Sandoval & Bell, 2004). Through 
successive cycles of implementation, analysis and redesign, we investigate core questions 
about learning and the development of ideas on one hand; and we iteratively refine the 
materials, learning environments, and design principles behind activities that act as the 
context and stimulus for learning on the other. The curricular materials in question for 
this work comprise a course-sized collection of modeling activities in the domain of 
quantification, data modeling, and statistics. 
 In this setting, our research proceeds at two different scales, and the implementation 
episode presented here makes contributions to both. At the local scale, we are concerned 
with questions associated with linear regression and proportional reasoning, connecting 
these concepts with representational fluency with Cartesian graphs. At this level, we ad-
dress two questions:

• How can engaging with graphical interpretations of their thinking both destabi-
lize and enrich learners’ interpretations of data that are based implicitly on linear 
models of variation and/or proportional reasoning? 

• What sequences of activities can provide opportunities for learners to struggle 
with linear models in a broader context, identifying the implicit assumptions, 
strengths, and limitations of linear models?

At a larger scale, we are investigating the following question: 
• What are design principles for Model Development Sequences that activate im-

portant connections between big ideas in a course on Quantification and Data 
Modeling?
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The Implementation Context and the Study Population
In the episode analyzed here, the first author was the instructor for a three-credit mod-
ule within a Masters of Mathematics Teaching degree program (Maestría en Docencia de 
las Matemáticas) at a public South American university, offered in a sequence of evening 
class sessions. The participants in this course were thirty secondary mathematics teach-
ers, twenty-eight of whom were actively employed as classroom instructors during the 
daytime. The module was a standard component of the university’s Master’s degree pro-
gram and was oriented toward mathematical modeling with functions using technologi-
cal tools. It consisted of twenty-four hours of class sessions offered in daily sessions dur-
ing a single week of calendar time. In addition to addressing the required topics of the 
module, the instructor aimed to expose participants to a variety of research-based ped-
agogical approaches that foregrounded student participation, construction, and mod-
eling. These included not only activities from the M&MP tradition, but also genera-
tive activities (Stroup, Ares, Hurford, & Lesh, 2007; Stroup, Ares, & Hurford, 2005; 
Brady et  al., 2013), and constructionist activities (Papert 1980, 1991). The instructor 
also intended the particular materials used in the course to be responsive to the partici-
pants’ needs and interests. Pursuing an adaptive approach to the module in this com-
pressed timeframe was a demanding experience; it required extensive preparation before 
the module began as well as significant adjustments and course-corrections during the 
week of the implementation itself. 
 Data collected during the course included artifacts produced by the student groups 
during individual and small-group problem solving activities; student reflections sub-
mitted to a Google Site established for the course module; and the instructor’s reflective 
field notes taken after each session. These data were analyzed in order to characterize the 
instructional decisions that were made during a single segment of the course module, 
which constituted an MDS sequence.
 We argue that this course module was a particularly appropriate context to engage in 
reflection on design principles for MDS sequences for several reasons. First, it placed the 
instructor in a role that blended aspects of teaching and research. Because the classroom 
group consisted of practicing teachers, they were attentive not only to the mathematical 
content of the activities, but also to pedagogical moves made by the instructor within 
and between activities. Second, because adaptability and responsiveness to the diversity 
of learners’ ideas and ways of thinking were explicit instructional values for the module, 
this put additional pressure on the instructor to take a reflective and principled approach 
to the selection, ordering, and management of activities to exemplify these values. And 
third, because the module had an obligation to expose teacher-learners to a variety of 
types of activities and technological supports, it put pressure on the instructor to con-
struct new links between MEAs and activities that did not historically arise from within 
the M&MP tradition. Thus, it challenged him to reflect on the roles that activities from 
outside of the M&MP could play in unpacking and extending the ideas that emerged in 
MEAs. 
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Description of the Implementation
In this episode, we focus on one activity sequence of the module, which began with a pri-
mary MEA, the Bigfoot problem (Lesh & Harel, 2003, and see Appendix B), along with 
a Reflection Tool (RT) activity (Appendix C). It then included two extended generative 
activities, to be described below, which served as Model Extension Activities (MXAs) 
and the Drill & Skills Problem (see Appendix E), which the instructor used as a Model 
Adaptation Activity (MAA). Thus, the implementation as realized engaged with many 
of the activity types that have been used in building MDS sequences, and each of these 
activities was deployed with a specific pedagogical intention, which we will analyze. Our 
purpose is to describe the instructional decision-making processes that led the instruc-
tor to select these activities from a broader set of materials that he had prepared. These 
were situated decisions, responsive to patterns of thinking that emerged in the moment 
in the class’s work. They were intended to help the class to “unpack” the solutions they 
produced during the Bigfoot MEA. They thus illuminated implicit design principles for 
MDS sequences. Through discussions among the author group, we elaborated explicit 
versions of these principles, which we present at the end of the article.
 In the Bigfoot problem, the classroom space is arranged to portray the scene encoun-
tered by a group of cub scouts (niños exploradores) as described in Appendix B. Groups 
of 3–4 participants are given tape measures and work to make mathematical inferences 
about physical characteristics of an unknown person (“Bigfoot”) who has repaired the 
drinking fountain in the park and who has left large, distinctive footprints in the mud 
around the drinking fountain. 
 After the groups completed their solutions to the problem, the class engaged in a 
whole-class discussion, during which several factors emerged that the group experienced 
as puzzling or problematic. The majority of the groups arrived at solutions that involved 
calculating with ratios (using “la regla de tres” — the rule of three). The groups con-
structed these ratios in different ways — using one or more measures from the variety 
of available measures (footprint length, footprint width, or stride length); using more or 
fewer data points (e.g., sampling one or more group members; including data from oth-
er members of the class; restricting their samples to people with certain profiles — e.g., 
males and females, or males only1; or sampling both short and tall people; sampling tall 
people only. An interesting wrinkle for the groups’ thinking was added by the presence 
of one of the teachers’ six-year old daughter. Some groups saw measurements of her feet 
as relevant to the problem, while other groups did not: the discussion of this point raised 
important ideas about the conceptual models underlying their thinking. 
 As groups shared their work, it came to light that they had arrived at widely different 
inferences about the height of Bigfoot. (All groups attempted to infer the height, while 
only some groups attempted other features such as weight). When the instructor suggest-
ed making a graphical representation of the different groups’ inference methods, the dis-
cussion intensified. Some students were surprised to find that their ratio-based approach 
implied determining a line that passed through the origin. Meanwhile, the groups that 
used the 6-year old’s measurements felt that such a model was particularly problematic. 
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(Whereas during group work it had seemed acceptable to average data from adults and 
children in calculating proportions, the graphical representation made different conse-
quences of this decision more salient.) Some groups advocated a linear fit with a non-
zero y-intercept; other groups argued that a model that did not pass through the origin 
was problematic: in the extreme, how could someone have a foot size of zero inches, but 
a non-zero height? 
 Gradually, the notion emerged that no single predictive linear model could be used 
satisfactorily over the entire domain of possible foot sizes. Although this idea was pow-
erful, the instructor felt that it was only shakily grasped and not fully taken as shared by 
the class as a whole. To reach this insight, learners had moved from their comfort zone of 
a ratio calculation (accompanied by an averaging process if they sampled more than one 
subject) to connect their reasoning with a graphical interpretation involving a function 
whose domain was in question. This choice of representation also involved a change of 
conception from using arithmetic to calculate an unknown to using a function to describe 
a relation of covariation between two measurements. Moreover, in the class discussion 
some students (correctly) pointed out that even if a group produced a close-to-accurate 
inference about Bigfoot’s actual height, this did not necessarily mean that their modeling 
strategy was grounded in a superior method. In fact, it happened that the group whose 
estimate was closest to the mark had based their guess on only one measurement, hav-
ing also eliminated data from their sample based on a hunch about the result. In short, 
while important and powerful ideas surfaced through engaging with the Bigfoot MEA, 
these ideas were experienced as problematic and were not ready for complete “digestion” 
by the class. In particular, while it was clear that the function-based approach provided a 
wider view of the meaning of calculations, it was not so clear that this wider perspective 
was helpful in arriving at a “correct answer,” and, in fact, the experience had called into 
question the very nature of correctness.
 Given this class’s experience with the Bigfoot MEA, the instructor selected a sequence 
of MDS activities that would offer further opportunities to explore Cartesian graph rep-
resentations of linear and nonlinear relationships. We provide a brief account of each of 
these activities.
 First, a Reflection Tool (RT) was used to support groups in reviewing and reflecting 
on their problem-solving processes. The instructor chose an RT format that used a quali-
tative graph of productivity over time (see Appendix C), with the intention of immedi-
ately extending and problematizing the Cartesian representation. The most common ap-
proach to “graphing” the groups’ work over time was to divide the session into distinct 
periods when the group was following an idea or way of thinking. This supported the 
group in re-introducing the idea of a regime or sub-domain, which had surfaced in the 
relations between foot size and height in the Bigfoot problem.
 Next, the instructor selected two Model Extension Activities (MXAs) that would pro-
vide opportunities to engage with the graphical representation of linear and non-linear 
functions, but in this case as expressive tools. In the first of these activities, Cell Growth 
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Patterns (Stroup & Davis, 1999, and see Appendix D), learners created patterns of growth 
and described these patterns with tabular, graphical, and function representations. 
 Because these growth patterns were drawn in discrete steps, the resulting functions 
had integer-valued domains. Nevertheless, it appeared that the “scatterplot” of these val-
ues could be connected with an analytic function. However, having recently had an ex-
perience in which a function “fit” was problematic, some students reflected on the sig-
nificance of the non-integer values of this graph. 
 In the second of the Model Extension Activities (MXAs), groups of students worked 
with calculator-based motion sensors to create linear and non-linear position-time graphs 
through bodily motion (c.f., Brady, 2013). For the linear case, the class recalled the sto-
ry of the Tortoise and the Hare, in which the Tortoise wins by being “slow but steady.” 
Class members “played tortoise” with several variations, creating graphs that the class as 
a whole could then model with linear functions. Having seen the “Tortoise’s” motion en-
acted grounded the data in a physical experience, and yet the class found that there were 
still legitimate variations in modeling strategies. For instance, some focused on ensuring 
that the model agreed with the motion at the beginning and end of the race (see 3b); oth-
ers chose to ignore the initial segment of the graph in which the “Tortoise” was station-
ary due to reaction time, modeling only the motion that occurred in the middle of the 
race (see 3c). The first strategy yielded a measure of average speed; the second expressed 
a notion of “typical” speed or “cruising speed.”

Figure 2. Work from the Cell Growth Pattern activity, showing linear (2a), 
quadratic (2b,c), and exponential (2d) growth types.
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 The impact of these two modeling decisions was clear and even quantifiable, as the 
group had identified that the slope of the line constituted a measure of the Tortoise’s 
speed in meters per second. And yet both models had justifications, depending on the 
purpose for which they would be used. 
 To experiment with motions that were non-uniform and functions that were not lin-
ear, in the next part of the MXA the groups created stories of motion and enacted these 
narratives, capturing them with the motion sensor. A selection is shown in figure 4. Each 
of these graphs was captured by motion detectors in groups. One “actor” enacted her 
or his motion story, while another group member operated the calculator and calcula-
tor-based motion sensor. This activity helped to reinforce the relationship between the 
graphical representation and the notion of change over time. 

Figure 3. Graph of motion of the “Tortoise,” and two linear functions modeling that motion.

Figure 4. Examples of student-collected motion graphs: each is accompanied by a narrative.

 As students iteratively developed their stories and enacted them with motion detec-
tors, they became (1) more curious about the graphical representation itself, and (2) 
more expressive and inventive in manipulating it. For the curious, it was possible to turn 
on a velocity graph of the motion, as shown in figures 4d and 4e. Reflecting on the re-
lations between the two graphs, and attempting to create a motion with a “clean” graph 
for both position and velocity, became a rich area of experimentation for these groups. 
And on the expressivity front, groups found ways of manipulating the data capture to 
achieve desired effects. For instance, in the story for graph 4c, a sudden change of direc-
tion and burst of speed was required. At first, the group could not achieve a sufficiently 
dramatic effect, because the actor could not physically accelerate sufficiently to produce 
the graph he desired; the group solved this problem by having the ‘cameraman’ and the 
actor move: at the point where the graph reaches its maximum, the actor and cameraman 
both moved toward each other.
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 In the final activity of this MDS, the group engaged with the Drills and Skills prob-
lem (Appendix E), which was positioned as a Model Adaptation Activity (MAA). In the 
problem, six different models are presented as fitting functions for a fictitious data set re-
lating the time schools spent on drill and practice for a high-stakes exam to the average 
student score at the school on that exam. Each of the models has equal statistical validity, 
as measured by the sum of the “unexplained” variation over the data set. The students’ 
challenge is to choose two of the graphs and provide a justification for each, explaining 
why this relation between practice and performance might hold. 
 In this activity, the teachers showed strong interpretive skills, both in giving a mech-
anistic account to support different fitting functions and in qualifying their interpreta-
tions/mechanisms by making reference to the high level of variation in the data. The re-
lationship here between the data and the equation model was at least as problematic and 
challenging as in the Bigfoot data; the teachers’ comfort in reasoning about this relation-
ship was thus evidence of their having successfully internalized important concepts in 
this connection. 

The student begins from prior knowledge 
or from initial learning. Beginning from 
there, his achievement grows as a func-
tion of time, until it reaches a maximum 
point, after which the achievement level 
stabilizes and becomes constant, that is to 
say, if he practices more, he no longer sees 
an improvement in results; that is, now he 
needs to work on other types of activities 
to further improve outcomes.

The student begins from prior knowledge 
or from initial learning. Beginning from 
there, his achievement grows as a function 
of time considerably, until it reaches a 
maximum point, after which his achieve-
ment begins to diminish, due to fatigue or 
being overwhelmed by the required activ-
ity of practicing.

Figure 5. Two groups’ interpretations of explanatory models for the Drills & Skills data 
(translations by the instructor).

Thus, over the course of this MDS sequence, a primary problem-solving experience with 
an MEA (Bigfoot) gave rise to debate about the use of functions in making inferences 
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based on data. Key ideas about a function’s domain and the way the function expresses 
covariation became problematic for the group. This debate raised fundamental questions 
about the strengths and limits of linear models and how they connect to and support 
arithmetic procedures. This setting opened the way for the activities that more openly 
explored of the meaning and “workings” of Cartesian graphs, which was pursued with 
a Reflection Tool and in two Model Exploration Activities. Finally, teachers were then 
able to apply an enhanced sensibility for function graphs to a Model Adaptation Activity 
that foregrounded the range of possible interpretations, mechanisms, and models which 
could underlie a curve-fitting argument.

Illuminating Design and Implementation Principles for MDS activities

During the course module, the first author was conscious of the goals and decisions that 
guided his selection of activities for the MDS. In discussing this work with the author 
team, the group identified common themes between these decisions and other MDS 
work, enabling us to articulate them as provisional design principles. The central instruc-
tional situation here was that a classroom group had engaged with an MEA and had de-
veloped solutions to the client’s problem that they deemed satisfactory. Later, however, 
in sharing out their solutions, they recognized limitations in their thinking and in the 
models they have produced. This situation is not a universal one, but it has occurred of-
ten in our experience of working with MEAs. Principles for MDS sequences are intended 
to resonate with instructional goals appropriate to situations that are typical of the state 
of idea development found in classes after MEAs. Below, we provisionally lay out six 
principles that emerged in our discussion of this episode, as we discussed and analyzed 
it in the light of our broader experience in designing and implementing MDS sequences 
For each principle, we discuss the way that it appeared in the first author’s instructional 
decision-making. 
 1. The Experiencing Multiple Perspectives principle. Activities in an MDS should 
provide learners with opportunities to see the core mathematical concepts that have sur-
faced in their MEA work from multiple perspectives. This begins with the MEA itself, as 
groups share their solutions informally, in presentations, or in “poster sessions.” Variation 
across groups prompts learners to engage in additional levels of reflection, as they experi-
ence different ways of thinking about closely related mathematical constructs. Then, in 
MDS activities, students should be given the opportunity to see how related but different 
assumptions and problem situations call for different but related models and solutions 
to the ones they have developed in MEAs. This Experiencing Multiple Perspectives prin-
ciple is somewhat analogous to the Generalizability principle for MEAs (see above); and 
it is also related to the Multiple Embodiments principle that was articulated by Zoltan 
Dienes (e.g., 1971). 
 In the episode described above, multiple perspectives were powerfully used in several 
ways. First, the Cartesian representation itself entered the discussion as a means of pro-
viding an alternative perspective on the Bigfoot problem, and Cartesian graphs were sub-
sequently encountered in a variety of settings. Moreover, the different activities involved 
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different relations between functions and the data they were intended to represent. In the 
Cell Growth Patterns activity, many students were able to fit analytic functions exactly to 
their data, so that the function seemed to express the “internal logic” of the growth pat-
tern, even extending that logic to a continuous rather than discrete view of growth. In 
contrast, in the Tortoise motion-sensor activity, differences in modeling choices came to 
the forefront, emphasizing the interpretive role of the match between function and data 
in this setting. And finally, in the Drills and Skills problem, the functions that were “fit” 
to the data explicitly involved imposing interpretations on data that were designed to ad-
mit several statistically valid interpretations. This line of inquiry built upon the class’s re-
alization during the Bigfoot MEA that their proportional approaches implied a model 
of human growth that was based on a linear function passing through the origin. It gave 
them a context for reflecting on such models in the broader context of functions that 
provide alternative and competing explanatory narratives for phenomena represented in 
datasets.
 2. The Reflectively Processing Shared Experiences principle. M&MP perspectives 
on learning and idea development tend to value the personal and even idiosyncratic con-
nections that learners may make as they solve problems. It is thus extremely important to 
give groups opportunities to reflect on the way that they have solved problems. In addi-
tion, at the level of instructional design it is desirable to shape learning sequences so that 
they are responsive to the challenges, questions, and concerns raised by the learners them-
selves and offer them opportunities to process the ideas that have emerged for them. To 
follow this principle, MDS activities should thus sustain an extended conversation with 
the questions that were encountered by the groups as important to their work. A key is-
sue here is “Who ‘owns’ the mathematics that we are discussing?” Ideally, the answer is 
“the students” — that is, that the investigations in the MDS are grounded in questions 
that they themselves have raised implicitly or explicitly. In the episode described here, 
this principle appeared in the instructor’s decision to depart from his prepared instruc-
tional sequence in order to give greater emphasis to graphical representations and the in-
terpretive significance of matching functions to data. Moreover, it also surfaced in the 
instructor’s use of generative activities that allowed learners to construct mathematical 
objects that expressed their own particular interests and ways of thinking (Stroup, Ares, 
Hurford, & Lesh, 2007; Stroup, Ares, & Hurford, 2005). .
 3. The Exploring the Range of Motion of Ideas principle. According to this prin-
ciple, the situations we model in realistic problem solving are often dynamic systems, 
producing exhibiting a range of different phenomena under variations in key param-
eters. In modeling such systems, it is important to capture these variations, so as to be 
able make decisions where parameters may change or may be uncertain. Modeling in re-
al-world situations often involves optimization and tradeoffs, so it is rarely sufficient to 
comprehend a system through a “snapshot” of its behavior. Fortunately, as both learners 
and instructional designers we have at our disposal an increasing range of computational 
environments for realizing our models in dynamic, executable form. MDS activities that 
offer such representational environments to learners can support extensions of the think-
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ing that groups were able to achieve in the time-compressed experience of MEAs. In our 
case study, this principle emerged first in the discussion of the Bigfoot MEA. Realizing 
the measurements taken by different groups in scatterplots and interpreting the “rule of 
three” in terms of a linear function through the origin, groups could visualize the effects 
of changes in the data points, the effects of measurement errors of different sizes (a con-
cern of one group in particular), or the challenges that the cub scouts might encounter 
as children attempting to implement the groups’ (adult-based) procedures.
 4. The Building Representational Fluency principle. This principle recognizes the 
central role played by representations in modeling, not only in communicating ideas but 
also in supporting thinking itself. Thus, many MDS activities may focus on learning the 
craft of disciplinary uses of representations as expressive, versatile, and powerful tools. 
This principle acted as a primary motivator for activity selection in the instructional se-
quence of our case, as all of the activities emphasized using Cartesian space as an expres-
sive medium for meaning-making.
 5. The Supporting Authentic Formalization principle. While Principle #2 empha-
sizes that MDS activities should remain closely tied to authentic questions and ideas gen-
erated by groups in their MEA solutions, this principle holds that it is also valuable for 
learners to connect their solutions and ways of thinking with the practices of the larger 
mathematical community. Activities that introduce conventional techniques and algo-
rithms as well as standard terminology may be responding to this principle. In the epi-
sode discussed here, this principle was under-represented: indeed, the instructional de-
cision to emphasize representational fluency was made at the expense of activities that 
would have explored the notion and mathematical basis of statistical measures of fit for 
linear models.
 6. The Recognizing Mathematization as Active Interpretation principle. This 
principle emphasizes that modeling in authentic settings goes beyond applications to in-
volve fundamental acts of interpreting the world. Activities attending to this principle 
may foreground the consequences of applying given models as lenses on phenomena, in-
cluding opportunities to “go beyond thinking with a given model to also think about it” 
(Lesh et. at 2003, p39). 
 This principle surfaced at various points in the implementation episode. In the dis-
cussion of the Bigfoot MEA itself, this principle was behind the move made to rethink 
the mathematical basis for the rule of three and the implications of applying this ratio-
based approach to infer the height of Bigfoot. In the Cell Growth Patterns activity, it 
was active in discussions where students classified patterns in groups. Some patterns that 
appeared dissimilar on the surface were later seen as being in the same “family” (e.g., lin-
ear, quadratic, or exponential types of growth). At the same time, some growth patterns 
that seemed similar on the surface were later identified as belonging to different growth 
families. And finally, in the Drills and Skills Model Adaptation Activity, this principle 
was involved in the fact that one can “see the data as” expressing and being modeled by 
a variety of very different function-types, each of which carries a predictive story about 
the relationship between additional practice time and student achievement.
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Conclusion

In this article, we have argued that the practice of mathematical problem solving in the 
world outside of school has changed dramatically in recent years. This situation con-
stitutes an urgent call for change in the practices of school mathematics — both in 
the mathematical tools that students use and the kinds of mathematical modeling and 
problem solving practices that students engage in. At the same time, we argued that the 
school setting has important features absent from real-world problem-solving settings, 
which should be exploited in the design of instructional sequences around MEAs. We 
introduced the idea of a Model Development Sequence as it has emerged in recent de-
sign research within the M&MP tradition. We emphasized the importance of main-
taining the adaptability and flexibility of MDS materials, recognizing the teacher’s need 
to construct activity sequences that are responsive to the needs of their own particular 
classroom groups. Nevertheless, we showed that this selection and adaptation process is 
a highly purposeful activity, which can benefit from guiding principles. Then, we pre-
sented an episode from a recent implementation experience, where the instructor as-
sembled an activity sequence around the Bigfoot problem, responding to the group’s 
inquiry and questions in working with that MEA. We described the MDS that result-
ed, and we articulated six provisional principles for assembling MDS sequences, which 
emerged from discussing the episode in the context of the author group’s broader expe-
rience with MDSs. 
 We argue that MDS sequences built around MEAs provide an important combina-
tion of (1) the authenticity of problem solving as it is experienced in the world outside 
of school and (2) the opportunities for reflection, unpacking and formalization that can 
be achieved through carefully designed and adapted extension activities. On one hand, 
MEAs offer problem solving situations that put learners off balance and require them 
to adapt their formal mathematical knowledge creatively. On the other hand, MDS ac-
tivities help learners to appropriate and “domesticate” the raw ideas that emerge in their 
MEA work, as well as to relate these ideas to standard disciplinary representations, pro-
cedures, and practices. By combining these two aspects, we can create learning environ-
ments that act as authentic simulations of real-world problem solving while also pro-
viding ample opportunities to reflect, unpack, and formalize important concepts in the 
curriculum. 

Note
1 One group even decided to sample only the instructor, reasoning that there might be culturally-
specific foot-size to height ratios, and since the problem came from North America, they should restrict 
their sample to only North Americans.
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Appendix A: The Summer Jobs problem

The Summer Jobs Problem

Last summer Carla started a concession business at Wild Days Amusement Park. Her vendors carried
candy, hot dogs, and drinks around the park, selling wherever they found customers.

The business was a great success.  Next summer, Carla is expecting that all of her vendors will want to
work for her again. But, the park managers told her that she won’t be allowed to hire as many vendors
next summer.  So, she needs your help deciding which workers to rehire.  If all of last year’s vendors
apply for a job, she’ll only be able to hire about a third of them to work full time, and about a third of
tehm to work half time.  She won’t be able to hire the remaining third of them.

The table below shows a sample of nine people who worked for her last summer.  To try to figure out a
procedure for deciding who to hire next summer.  Carla reviewed her records for the nine vendors who
are shown. For each of these vendors, she totaled the number of hours they worked and the amount of
money collected – when business in the park was busy (high attendance), steady (average attendance),
and slow (low attendance). (See the table that follows.) She wants to rehire the vendors who will make
the most money for her. But, she doesn't know how to compare them because they worked different
numbers of hours; and, she isn’t sure what to do about the fact that it’s easier to sell more when the
attendance is high.

Write a letter to Carla describing how she can evaluate all of the vendors who worked for her last
summer, and how to decide who to hire full-time and part-time.  Show how your procedure works for
the nine people workers who are shown in the table.  Give details so Carla can check your work, and
give a clear explanation so she can decide whether your method is a good one for her to use.

HOURS WORKED LAST SUMMER
JUNE JULY AUGUST

Busy Steady Slow Busy Steady Slow Busy Steady Slow
MARIA 12.5 15 9 10 14 17.5 12.5 33.5 35

KIM 5.5 22 15.5 53.5 40 15.5 50 14 23.5
TERRY 12 17 14.5 20 25 21.5 19.5 20.5 24.5
JOSE 19.5 30.5 34 20 31 14 22 19.5 36

CHAD 19.5 26 0 36 15.5 27 30 24 4.5
CHERI 13 4.5 12 33.5 37.5 6.5 16 24 16.5
ROBIN 26.5 43.5 27 67 26 3 41.5 58 5.5
TONY 7.5 16 25 16 45.5 51 7.5 42 84
WILLY 0 3 4.5 38 17.5 39 37 22 12

MONEY COLLECTED LAST SUMMER (IN DOLLARS)
JUNE JULY AUGUST

Busy Steady Slow Busy Steady Slow Busy Steady Slow
MARIA 690 780 452 699 758 835 788 1732 1462

KIM 474 874 406 4612 2032 477 4500 834 712
TERRY 1047 667 284 1389 804 450 1062 806 491
JOSE 1263 1188 765 1584 1668 449 1822 1276 1358

CHAD 1264 1172 0 2477 681 548 1923 1130 89
CHERI 1115 278 574 2972 2399 231 1322 1594 577
ROBIN 2253 1702 610 4470 993 75 2754 2327 87
TONY 550 903 928 1296 2360 2610 615 2184 2518
WILLY 0 125 64 3073 767 768 3005 1253 253

      Figures are given for times when park attendance was high (busy), medium (steady), and low (slow).
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Appendix B: The Bigfoot problem
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Appendix C: A Group Reflection Tool

Group Reflection Tool: Your Group’s Problem-Solving.

1. Graph the Session. Take 5 minutes to discuss your group’s problem-solving work. Make 
a “Graph of Progress” that describes how the group moved toward its final solution. In 
the example below, notice that the graph doesn’t always show forward progress: some-
times the group felt they were making no progress, and sometimes they felt they were 
moving away from a solution. 

In the space below, sketch your group’s problem solving graph. Discuss this as a group 
until you all agree on a graph that represents your work.

Your Group’s Problem Solving Graph and Two Critical Points

2. Identify Two Critical Points. In thinking back on the group’s problem-solving session, 
identify two critical moments in the session, when the group changed its rhythm. Mark 
them on your group’s problem solving graph, above.
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Appendix D: The Cell Growth Patterns activity
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Appendix E: The Drills & Skills problem
 

Table 1: Time Spent on Drill  
as a Predictor of Performance 

on a Standardized Test 
School Average Time 

Spent on Drill 
Each Week 

Test 
Scores 

A 17.49 49.55 
B 28.02 48.76 
C 23.62 64.69 
D 36.6 57.74 
E 39.92 55.55 
F 44.54 69.96 
G 19.53 55.63 
H 40.22 68.92 
I 48.77 53.69 
J 14.18 58.79 
K 20.54 68.97 
L 25.06 42.02 
M 26.95 66.37 
N 40.09 59.86 
O 25.88 58.51 
P 28.95 54.99 
Q 23.79 48.68 
R 34.17 53.84 
S 49.29 59.75 
T 35.92 70.34 
U 46.09 72.9 
V 52.83 55.93 
W 54.46 61.24 
X 53.45 74.69 
Y 55.53 71.11 
Z 66.4 60.76 

In two school districts in Illinois, the superintendents and school 
board members are considering a new policy, which they hope will 
help raise their students’ scores on the state’s end-of-year 
standardized test. The new policy will require all teachers to 
increase the amount of time that they spend each week on drills, 
which focus on the kind of basic skills that the tests emphasize. 
Table 1 shows information about the past performance of students 
in the 26 middle schools where this new policy will be enforced. 
For each school, the table shows the average amount of time that 
each school spent on drill each week. Then, the table also shows 
each school’s average score on the end-of-year test.  Questionnaires 
and observations were used to estimate the current amount of time 
that teachers spend on drill each week.  
Before the new policy is adopted, the school boards have asked 
anybody who is interested to submit a brief letter (no more than 2-
pages) explaining their predictions about what will happen if all 
schools are required to spend 90 minutes per week on drills. 
Unfortunately, even though the letters that the school board 
received gave lots of opinions, they didn’t give very good 
explanations.  Several of the predictions that seemed to be most 
worthwhile to consider included graphs like those shown in Table 2.  
But, only one of these graphs came with a “story” that explained 
why the trend and prediction was more sensible than others that 
were suggested.  And, the school district’s data analysis person 
discovered that it didn’t help to ask: “Which graph fit the data 
best?” – because all six graphs fit the data equally well.  That is, the 
sum of distances from the prediction line to the points on the graph 
were exactly the same for each of the six prediction lines!  So, the 
prediction that the school board will believe probably will be the 
one that is accompanied by a convincing “story” that explains the 
trend. 
Your Task: Please write  “stories”, similar to the one given below, 
that explain the other five trends and predictions.  

 

Dear School Board Members, 

For every extra minute that students spend on drill, 
their test score should be expected to increase at a 
steady rate.   So, as more time is spent of drill, the 
trend should look like a straight line.  For example, 
if students spend 90 minutes on drill, then my graph 
shows that the average test scores should be about 
65. 

Sincerely, 
Sam Straight 
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Table 2:  Six Graphs for Making Predictions about Future Test Scores 

  
A Straight Line Trend 

 
 

A “Stair Step” Trend 
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Resumo. Neste artigo, abordamos o desafio de apoiar os alunos na resolução de problemas da vida real 
como uma parte estimulante da sua experiência de aprendizagem da Matemática na escola. Por um 
lado, descrevemos os aspetos controversos ligados às abordagens escolares tradicionais na preparação 
dos alunos para o sucesso num mundo cada vez mais caraterizado pela complexidade e pela rápida mu-
dança das áreas disciplinares. Atualmente os profissionais com formação nos domínios STEM (scien-
ce, technology, engineering, and mathematics) precisam de adaptar, de forma criativa, o conhecimento 
que obtiveram na escola para o usarem de modo eficaz; assim, é desejável propor aos alunos atividades 
que ofereçam experiências mais realistas em cenários de resolução de problemas para além da escola. Por 
outro lado, defendemos que o contexto escolar proporciona oportunidades únicas para a reflexão em 
torno de experiências de resolução de problemas, permitindo expor, ampliar e formalizar as ideias que 
emergem das resoluções dos alunos em problemas realistas. Para harmonizar estas duas necessidades, 
apresentamos as Atividades Geradoras de Modelos (Model-Eliciting Activities — MEAs) como contex-
tos autênticos de resolução de problemas e descrevemos as Sequências de Desenvolvimento de Mode-
los (Model-Development Sequences – MDSs) como uma estrutura para atividades de aprofundamento 
que ajudem os alunos a processar os modelos conceptuais que produziram nas MEAs e levem os vários 
grupos na sala de aula a formular ideias partilhadas, consistentes com as normas e convenções da disci-
plina. Tendo por base esta estrutura de trabalho, apresentamos um episódio de ensino, extraído de uma 
pesquisa de design-research em curso, no qual o primeiro autor elaborou e adaptou uma MDS em res-
posta às necessidades dos alunos que emergiram no momento. Concluímos com a descrição das deci-
sões didáticas que guiaram o nosso trabalho e formulamos um conjunto de seis princípios de design de 
MDSs que sobressaíram da nossa análise reflexiva deste episódio de implementação.
 Palavras-Chave: Modelação Matemática, Resolução de Problemas, Problemas do Mundo Real, 
Princípios de Design. 

Abstract. In this article, we address the challenge of supporting students in real-world problem solving 
as a vibrant part of their in-school experience of mathematics. On one hand, we describe the issues as-
sociated with using traditional schooling approaches to prepare students for success in a world that is in-
creasingly characterized by complexity and rapid disciplinary change. Today’s STEM professionals need 
to adapt the knowledge they have learned in school in creative ways to use them effectively; thus it is 
desirable to provide learners with activities that offer a more realistic simulation of problem-solving set-
tings beyond school. On the other hand, we argue that the schooling context does offer unique oppor-
tunities for reflecting on problem-solving experiences and for unpacking, extending, and formalizing 
ideas that emerge in students’ solutions to realistic problems. To balance these two needs, we describe 
Model-Eliciting Activities (MEAs) as authentic problem-solving settings, and we describe Model-De-
velopment Sequences (MDSs) as a framework for extension activities that help students to process the 
conceptual work they have done on MEAs and that help classroom groups to develop shared unders-
tandings that are consistent with disciplinary norms and conventions. With this frame in place, we then 
present a teaching episode extracted from ongoing design research, in which the first author elaborated 
and adapted an MDS in response to student needs that surfaced in the moment. We describe the ins-
tructional decisions that guided this work, and we articulate a set of six design principles for MDS se-
quences, which emerged through the author group’s reflective analysis of this implementation episode.
 Keywords: Mathematical Modeling, Problem Solving, Real-World Problems, Design Principles
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