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Abstract. Making inferences about unknown populations is central in statistical reasoning. However, 

little attention has been paid to empirical investigations of how and why students develop sampling 

models when investigating a categorical variable whose values are nominal. This paper reports on 

an intervention that draws on the models and modeling perspective, where 25 pre-service teachers 

were asked to develop a sampling model that could be used to make inferences about the number of 

different colored beads and the distribution of different colored beads in different sized populations. 

Using a thematic analysis, three main results about the characteristics of the students’ models of 

sampling and inference with nominal variables were identified: to catch all the low frequency colors 

in the population; not to overestimate the low frequency colors in the population; and, to formalize 

the relationships used in making inferences. These results highlight several issues about students’ 

understanding of the relationship between sample representativeness and sample variability and its 

consequences for making inferences. 
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Resumo. Fazer inferências sobre populações desconhecidas é fundamental no raciocínio estatístico. 

No entanto, pouca atenção tem sido dada às investigações empíricas sobre como e com que objetivo 

os alunos desenvolvem modelos de amostragem ao investigarem uma variável categórica cujos 

valores são nominais. Tendo por base a perspetiva de modelos e modelação, este artigo relata uma 

intervenção, durante a qual 25 professores em formação inicial foram solicitados a desenvolver um 

modelo de amostragem que pudesse ser usado para fazer inferências sobre o número de contas de 

cores diferentes e sobre a distribuição de contas de cores diferentes em populações de tamanhos 

diferentes. Por meio de uma análise temática, foram identificados três resultados principais sobre as 

características dos modelos dos estudantes acerca de amostragem e inferência com variáveis 

nominais: capturar todas as cores de baixa frequência na população; não sobrevalorizar as cores de 

baixa frequência na população; e formalizar as relações encontradas para fazer inferências. Os 

resultados põem em evidência várias questões sobre a compreensão dos alunos acerca da relação 

entre a representatividade da amostra e a variabilidade da amostra e suas consequências na 

produção de inferências. 

Palavras-chave: variáveis categóricas; suscitar as ideias dos alunos; perspetiva de modelos e 

modelação; categorias nominais; formação inicial de professores; amostragem. 

Introduction 

The abilities to interpret and make sense of data in various forms in people’s private and 

professional lives are now more important than ever before (Manyika et al., 2011). 

However, data itself does not tell us anything, but requires being organized, examined and 

reasoned with using various models in order to provide us with information and knowledge. 

Hence, modeling and statistical reasoning have become increasingly important for students 

at the secondary and post-secondary levels. Students need to understand and become 

proficient with a wide range of statistical concepts and learn the forms of reasoning that are 

needed to interpret and make sense of data (Franklin et al., 2007; OECD, 2013). Ben-Zvi, 

Bakker, and Makar (2015) stress that the core of statistical reasoning is to make inferences 

about unknown populations using samples of data that are representative of the population. 

Thus, adequate models of sampling are crucial in order to make sound inferences about a 

population. 

The research that has been conducted to date with respect to students’ thinking and 

approaches to sampling has been focused primarily on using sampling models to make 

inferences about population statistics such as mean, median, mode and proportions 

(Batanero et al., 2020; Lipson, 2003; Saldanha & Thompson, 2002). The population statistics 

in these studies are derived from different types of variables describing various attributes 

of the population. There are many ways to define different types of variables satisfying a 
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plethora of conditions and suitable for various purposes (Dodge, 2008; Everitt & Skrondal, 

2010). The type of a variable is often strongly connected to the type of data it represents 

and common types are interval, ratio, ordinal and nominal variables. 

Students’ thinking about sampling models for making inferences about the number of 

categorical values and the distribution of a nominal variable in a population has been given 

little attention in the research. According to Budgett and Puloka (2019), reasoning with 

categorical data is challenging for both students and teachers, with their understandings 

and use of proportional reasoning being a major confounding factor (Batanero et al., 1996; 

Böcherer-Linder et al., 2018; Watson & Callingham, 2014). In this paper, our goal is to 

explore the sampling models students develop when engaged in a sense-making modeling 

task about making inferences about the attributes of a nominal variable for different size 

populations. 

Previous research  

Discussing the process of making inferences about unknown populations using samples of 

data in general, Ben-Zvi et al. (2015) stress that research points to the importance of the 

samples used being representative of the population in question. The samples should 

exhibit a balance between sample representativeness and sample variability (Saldanha & 

Thompson, 2002; Shaughnessy, 2007). To overly rely on one or the other might result in the 

belief that the samples tell you either absolutely everything or absolutely nothing about the 

population (Ben-Zvi et al., 2015). 

Another approach discussed in the literature on sample representativeness and sample 

variability is the idea of bootstrapping. Bootstrapping is a collective name of a family of 

repeated random sampling approaches usually involving replacement. Multiple researchers 

(e.g., Engel, 2010; Hesterberg, 2006) have pointed out the benefits of bootstrapping 

methods to understanding key concepts in statistics such as the logic of inference. However, 

McLean (2015) has noted that there is limited research on students’ reasoning about 

sampling and making inferences using bootstrapping. 

Although the research focusing on sampling methods for making inferences about the 

number of categorical values and the distribution of a nominal variable in a population is 

sparse, a few related research studies are found in the literature. These studies almost 

exclusively focus on bivariate categorical data that can be represented in two-way tables. 

Budgett and Puloka (2019) investigated the questions posed and the ways undergraduate 

students reasoned based on different representations of bivariate categorical data. These 

researchers found that working with situations involving categorical data and making 

comparisons were ambiguous for the students. Whether the data were presented 

graphically or in two-way tables, the students struggled with doing within-category and 

between-category comparisons, often leading to conflicting conclusions and inferences. 
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Budgett and Puloka (2019) noted that different ways to parse the categorical data and 

understanding the associations between the variables can be seen as different conditional 

situations, which influenced how students connected and associated the categorical data. 

When investigating 11-13 year old students’ reasoning about associations of categorical 

variables, Casey et al. (2018b) found similar results. Neither data tables nor various graphs 

representing different conditions provided support for the students in thinking produc-

tively about the categorical data and assessing potential associations between the catego-

ries. These results and challenges persist throughout the educational system and apply to 

pre- and in-service secondary mathematics teachers (Casey et al., 2018a). These research-

ers found that instruction focused on graphical representations, proportionality and 

percentages was successful in developing teachers’ abilities to more adequately reason with 

bivariate categorical data. The research we present in this paper complements and extends 

this earlier research by focusing on students’ ideas and their developing sampling models 

as they seek to make inferences about a categorical variable with nominal values. 

Theoretical framework 

In our research study, we drew on a models and modeling perspective (Lesh & Doerr, 2003). 

Following Doerr and English (2003), we understand a model to be a “system of elements, 

operations, relationships, and rules that can be used to describe, explain, or predict the 

behavior of some other familiar system” (p. 112). Models are not stand alone solutions to 

single and isolated problems, but rather generalizable systems that can be applied to similar 

problems and situations (Lesh & Doerr, 2003). Our use of this framework for our task design 

and data analysis is in line with Doerr et al. (2017), who argue that a models and modeling 

perspective incorporates key tenets from modeling perspectives in science education 

(Hestenes, 2010), statistics modeling (Lehrer & Schauble, 2010) and mathematical 

modeling (Barbosa, 2006). The models and modeling perspective stresses that models are 

iteratively developed generalizable sense-making systems that create shared representa-

tions and meaning of the phenomena investigated. In this perspective, the first step in 

supporting students in developing a model to make sense of a situation or problem is often 

using a model eliciting activity (MEA) (Lesh & Doerr, 2003). The purpose of an MEA is to 

elicit the students’ initial ideas about the problem situation to make these explicit and to 

facilitate discussion, evaluation and further development. The activity used in this study 

was specifically designed to investigate the models elicited when students engaged in a 

sense-making activity involving categorical variables taking nominal values given a physical 

problem situation and hands-on materials. 

In our study, we examined the models that students developed to make inferences about 

the number of categorical values and the distribution of a nominal variable in a population. 

Using the models and modeling perspective, we conceptualized the models that students 
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developed to consist of elements in terms of the actual samples collected, the quantities 

derived from the samples, and the conceived relationships among the collected samples, the 

derived quantities and the population at large. The collected samples are taken based on 

rules that determine a sampling procedure using attributes of the samples such as sample 

size and the number of samples. These attributes can be manipulated mathematically using 

specified operations resulting in derived quantities, relationships and representations 

which are used to make inferences about given populations. Thus, students’ models of 

sampling and inference consist of the rules that determine the sampling procedure, the 

mathematical operations used on the samples and how these are used in the inferences 

made by the students based on their conceived relationships between the samples and the 

populations. 

Aim and research questions 

The aim of this paper is to explore the sampling models students develop and the inferences 

made when investigating a categorical variable whose values are nominal in three different 

sized populations. To this end, we address the following research questions: 

1. What relationships did the students focus on to determine if their sampling models 

were reasonable for making an inference about a particular population? 

2. How and why did the students develop rules about sample size, number of samples 

and replacement? 

Setting and analysis 

To address our research questions, we designed a task aimed at eliciting the students’ 

sampling models. We analyzed the work of eight groups of preservice secondary teachers 

(from here on referred to as students) on the task using an exploratory thematic analysis. 

We will elaborate on the task and on the analysis below, but first we describe the research 

setting. 

Setting and data collection 

The 25 participating students were enrolled in a secondary mathematics teacher training 

program. Prior to participating in the study, these students had all taken at least one 

semester of mathematics courses on topics such as calculus, linear algebra, statistics and 

mathematics education. The statistics course was an eight-week course comprised of 12 

formal lectures presenting the content and theory and 12 lessons where the students 

worked on assigned problems connected to the content. The course was mathematically 
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and theoretically oriented, and the content covered stochastic variables, probability distri-

butions, normal and binomial distributions and formal inference. The role and function of 

samples were strongly tied to the theory about stochastic variables. 

In our study, the students were divided into eight groups of two to four students and 

placed in separate rooms where they were recorded with either a camera or an audio-

recorder. We asked students to think out loud during their work on the task. In the rooms, 

the students and the available materials were positioned so that the group was captured by 

the fixed camera or within the uptake radius of the audio-recorder. The first two authors 

circulated among the rooms making sure that the recording devices functioned properly 

and that the students understood the task. The data collected to document the students’ 

work consisted of audio recordings (for two groups) and video recordings (for six groups) 

and all individual students’ written work. The students all had individual worksheets on 

which they documented to varying degrees their work. All groups designated one member 

to take more careful notes of their collective work. The groups worked between 90 and 120 

minutes on the task. 

The task and its design 

To investigate the sampling models that the students developed, we created physical 

populations with a nominal attribute (color) that was readily visible to the students. We 

created three different sized populations of colored beads (N = 20, 400, 10 000). For each 

size population, we created two populations with visibly different distributions of colored 

beads: one nearly uniform and one clearly skewed. This resulted in a total of six populations 

for the students to investigate and develop a sampling model for making inferences (see 

Figure 1). Each different color bead represented a particular category. Hence, the distribu-

tion of colors in each container corresponded to the distribution of a nominal variable. 

 

Figure 1. The six containers of beads (two each of N = 20, 400, 10 000)  
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Drawing on the models and modeling perspective, the students were asked to develop a 

sampling model that could be used to make predictions about the number of different 

colored beads and the distribution of different colored beads in any size population (see 

Figure 2). Note that the first question (Q1) asks the students to make an inference about a 

single variable, which is a single-valued statistic, namely the number of different colors in a 

population. On the other hand, the second question (Q2) asks for an inference with respect 

to the distribution of colors in a given population, which is a multi-valued statistic.  

Develop a sampling model to investigate the following two questions: 

Q1. How many different colors of beads are there in a given container containing N beads? 

Q2. What is the distribution of colored beads in a given container containing N beads? 

The sampling model you develop should be applicable to any container containing an 

arbitrary (but known) number of beads. Test you sampling model on the six provided 

containers containing N different colored beads (N=20, 400, 10 000; two containers of each 

size) and reflect on your sampling model. Document your work on the provided worksheet. 

Figure 2. Students’ task for making inferences about a nominal variable 

The design of the task was based on the following five guiding principles (partly inspired 

by, but not identically to, the design principles of MEAs): First, we wanted the task to engage 

the students to the exploration and sense-making of an actual sampling situation. Hence, we 

decided to provide the students with physical material to use for their sampling, rather than 

use pre-defined samples or a computer simulation to generate samples (see Figure (3a)). 

Second, we wanted the sampling models developed by the students to be general and 

applicable to a general population. Hence, as shown in Figure 1, we (a) provided each group 

of students with six containers of three different size populations (N = 20, 400, 10 000) with 

the population size explicitly written on the containers, and (b) prepared the distributions 

of the two containers with equal population sizes so that one was roughly uniform and one 

was skewed. Third, to explicitly focus the students’ attention on the possibility that the 

distributions of the populations they investigated could be skewed, we provided a seventh 

container with 20 beads which the students could use in any way they wanted. The 

distribution of colors in the seventh container was skewed with nine red beads, five green 

beads, five orange beads, and one yellow bead, as shown in Figure 3b. Fourth, to facilitate 

the actual sampling of the beads, we provided a sampling device consisting of a plastic pipe 

of suitable diameter cut in half length-wised with closed ends (see Figure (3b)). This 

sampling device could hold a single maximum sample between 20 and 24 beads. Fifth, we 

included a closed envelope with data on the actual bead distributions of the containers. We 

instructed the students to open this envelope at the conclusion of their activity on the task. 

We intended the data on the actual distributions to be used as a reference in discussing and 

writing about the strengths and weaknesses of their sampling models. 
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Figure 3. (a) Students developing and enacting their sampling model; (b) The seventh 
container of beads and the sampling device 

Analysis 

We analyzed the data in three stages using thematic analysis (Braun & Clarke, 2006). We 

began with a theoretically based inductive analysis followed by an open coding process to 

create summaries of the audio and video data. The students’ written work documenting the 

representations of their developing sampling models was also analyzed and used for 

clarifying ambiguities in the audio and video material. The themes we identified, reflecting 

the main patterns in our data, provided the answers to our research questions. The analysis 

was carried out collaboratively by the three authors as outlined below. 

In the first stage of the analysis, we created detailed written summaries of the groups’ 

work on the task based primarily on the audio and video data. The students’ written work 

was used as a secondary source to clarify ambiguities in the audio and video data. Rather 

than including the students’ exchanges word for word, the summaries mixed quotations of 

students’ utterances with descriptions of actions and interactions within the groups. This 

provided us with a coherent and continuous narrative of each group’s work. In creating the 

summaries, we drew on the models and modeling perspective (Doerr & English, 2003; Lesh 

& Doerr, 2003) to make sure all instances of discussion and work involving samples, 

sampling, mathematical operations on collected samples and making inferences were 

captured and described in the summaries. This stage of the analysis resulted in five to eight 

page summaries of each of the eight groups of students. Given that the students spoke 

Swedish, the first two authors made the summaries and translated these into English, which 

then were discussed for clarity and coherence among all three authors. 

In the second stage of the analysis, we used a priori codes in terms of elements, 

relationships, rules, and operations from the models and modeling perspective to examine 

the sampling models that the students’ developed. This analysis parsed the summaries into 

segments focusing on different aspects of the students’ sampling models and how those 

aspects developed.  

In the third stage of the analysis, we applied inductive open-coding to the segments 

identified in stage two focusing on characterizing the relationships and rules in the students’ 

emerging sampling models. We focused on identifying the main characteristics of the 



166 J. Bergman Ärlebäck, P. Frejd, H. M. Doerr 

 

Quadrante 30(1) 158-177 

 

students’ sampling models and describing students’ reasoning as to why and how to make 

inferences for different sized populations about distributions of a categorical variable 

whose values are nominal. This analysis resulted in the themes that are reported in the 

results section below. In both stage two and three of the analysis, the coding was made 

inductively, iteratively, and collaboratively by the three authors and discrepancies were 

discussed and resolved as an integral part of the coding process. 

Results 

We identified three major themes about the characteristics of the students’ models of 

sampling and inference about nominal variables: to catch all the low frequency colors in the 

population; not to overestimate the low frequency colors in the population; and to formalize 

the relationships facilitating inferences. These three themes will be used to describe the 

relationships that the students focused on to determine if their sampling models were 

reasonable to make an inference and to describe how and why the students developed rules 

about sample size, number of samples and replacement. 

Catch the low frequency colors 

The seventh container included 20 beads with only one yellow bead that was clearly visible 

to the students. When they did not catch the yellow bead in testing their sampling models, 

many groups of students expressed concern, especially with respect to the first question 

(Q1) in the task about identifying the number of different colors in the population. Several 

groups considered it important for their collection of samples to contain the low frequency 

colors in order to justify that their sampling models were reasonable for making an 

inference about the population. We illustrate the students’ approaches to capturing the 

outliers (that is, colors of beads that occurred with low frequency in the population) with 

the work of three different groups. 

The first example is from the work of the two students (S1, S2) in Group A and highlights 

how the students used multiple repeated samples with replacement to address their 

concern about catching the low frequency colors. In addition, this example illustrates how 

the students’ sampling model developed by introducing a new rule deciding on the number 

of samples to collect. Group A’s initial sampling model contained the rule of taking two 

samples of five beads with replacement (replacing the first sample back in the population 

before taking the second sample). When the students tested their model on the seventh 

container and compared their result with the actual content of the container, they realized 

that they did not catch all the colors. They then decided to adapt a new rule to determine 

the number of colors in a population by taking repeated samples (with replacement) of five 

beads until no previously yet unseen color appeared in their sequence of samples. The 
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students’ implementation of the new rule on another and nearly uniform 20-bead container 

is displayed in Table 1. 

Table 1. Four samples with replacement collected by Group A to evaluate their developing 
sampling model. 

Sample 1 Sample 2 Sample 3 Sample 4 

2 blue 1 blue 1 blue 1 blue 

1 yellow 2 yellow 1 green 2 green 

2 green 1 green 1 orange (new color) 1 yellow 

 1 pink (new color) 2 pink 1 orange 

Table 1 shows that the students got a new colored bead in Sample 2 (pink) and another 

new color in Sample 3 (orange), but not in Sample 4 and therefore they stop taking more 

samples. Altogether they collected beads of five different colors, which they found a satis-

factory result, since they could see by direct inspection that five was the correct number of 

colors in the container. However, testing their sampling model with the skewed distributed 

20-bead container and skewed distributed 400-bead container, and by making a direct 

comparison to the actual distributions in the containers, did not given them satisfactory 

results. This prompted a discussion about the “naivete” (S1) of their approach. Student S2 

commented that “you get what you get and then you have to evaluate your results based on 

these facts”. Student S1 reacted to this statement by expressing that the rule about the 

number of samples taken needs to be revised: “how many samples are you supposed to take 

given that you don’t know if there are any sub-populations missing”. In summary, Group A 

was concerned with how many samples to take in order to catch the low frequency colors 

(“the sub-populations”), but also accepted the results as “you get what you get”, which to 

some extent minimalized their concern.  

A second example, identified in the work of group B, illustrates the importance for the 

group that their samples mirrored the distribution of colors in the population. The three 

students in Group B (S3, S4 and S5) set out to take one sample of four beads from the seventh 

container. The students poured the beads over the sampling device, but since it proved 

difficult for them to capture four beads (repeated tries resulted in three, two or zero beads 

ending up in the sampling device), they decided to collect five samples from the container 

with replacement and getting varying numbers of beads in each sample. They recorded 

which colors occurred each time they collected a sample. After having collected five 

samples, student S3 said: “in our samples we don’t see the yellow bead”. Student S4 

responded by arguing: “that is not totally unreasonable… and in our samples we get the 

greatest number of red beads, a majority, followed by green and orange”. This argument 
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introduced a new element into their model: an ordering of the frequencies of the colors. 

Even though S4 just argued that their sampling model is not unreasonable, S3 suggested: 

“Let us take five more samples and see if we can collect some more orange [beads] and the 

yellow one”. They increased the total number of samples to ten. In summary, the students 

in Group B developed a rule about taking a sufficient number of samples to ensure that (a) 

low frequency colors would be captured and (b) that the ordering of the frequencies of 

colors in their samples mirrored the frequencies they observed in the population. The group 

conjectured that “It feels reasonable that we need to collect a larger sample if the population 

is larger”, indicating that sample size is proportional to the population. This resulted in the 

group adjusting the sample size. The final rule the students applied in their sampling model 

was to take ten samples of size five, replacing each sample before taking a new sample. 

In the third example, we show how Group C tackled their concern with capturing the low 

frequency beads by making sure that the number of samples is adequately high. Group C 

decided to initially use the rule to take a set of two samples, each containing ten beads, 

placing back the sampled beads from the first sample back into the population before taking 

the second sample. In other words, they sampled with replacement. However, after taking 

the first set of two samples of sample size ten with replacement from the seventh container, 

they observed that the population contained a single yellow bead which was not captured 

in their two samples. Group C decided to continue to collect beads according to their model 

(sets of two samples of size ten, with replacement) to see how many sets of two samples 

were needed to capture the single yellow bead. The results of their exploration are 

displayed in Table 2. 

Table 2. Sampling results by Group C to assure capturing the yellow bead 

Set 1 Set 2 Set 3 Set 4 

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 

3 red 6 red 4 red 3 red 4 red 4 red 3 red 5 red 

4 orange 2 orange 3 orange 3 orange 3 orange 3 orange 3 orange 2 orange 

3 green 2 green 3 green 4 green 3 green 3 green 3 green 3 green 

- - - - - - 1 yellow - 

Group C needed four sets to capture the yellow bead. One of the students commented 

that this was “not totally unexpected, but since two samples were too few, I guess we better 

increase and take some more [samples] throughout”. The fact that four sets of two samples 

were needed to catch the yellow bead in the seventh container, rather than one set as 

suggested in their initial sampling model, led Group C to adjust their rule dictating the 
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number of samples to take. The group adjusted their developing sampling model by 

introducing a multiplicative factor of four in the rule specifying the number of samples to 

collect, since four times as many samples than specified in their initial rule were required 

to capture the yellow bead in the seventh container. Group C’s rules concerning sample size 

will be described further in a subsequent result section. 

These three examples show that when the students’ initial models did not result in 

catching the low frequency colored (yellow) bead, the students considered whether or not 

their initial sampling models were reasonable. In all three examples the students developed 

their sampling model by increasing the number of samples taken as a way to deal with their 

concern. In addition, the examples illustrate three different ways in which the students 

revised their rules in order to capture low frequency colors in their sampling models. 

However, the consequences of actually catching the low frequency colors in the larger 

populations introduced other concerns for the students, which are discussed in the next 

section. 

Not to overestimate the low frequency colors 

The second theme identified the concern of the students not to overestimate the low 

frequency colors in a population. This concern arose primarily after the groups had 

implemented their sampling models on the six containers and compared their results to the 

actual distributions of colors given in the envelope in the end of the activity. Evaluating the 

predictions of their sampling models about the frequency distribution of colors prompted 

the students to examine the relationships among the number of samples, sample size, and 

replacement as the basis for making their inferences about a population. We illustrate how 

students further developed their sampling model as a consequence of this evaluation with 

the interactions among the students in Group B. 

The students in Group B discussed why the number of blue beads was overestimated by 

their sampling model in the skewed container with the population of 10 000 beads shown 

on the right in Figure 1. Initially, when comparing the correct distributions for the 20 and 

400 bead populations to their inferences, the students described their inferences as “quite 

good”, “nice” and “close” regarding both the number of colors and their frequency distribu-

tions. However, these students were not as satisfied with their inference about the distribu-

tion of colors in the 10 000 bead container with the skewed distribution (see Table 3). 

The students argued that it was not surprising that their sampling model failed to sample 

either of the two black beads, since “getting two black beads out of 10 000 is not reasonable”. 

However, they expressed concern with their inference of the population containing 200 

blue beads, arguing that this was “not good enough” given that the actual number of blue 

beads was only ten.  
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Table 3. Inferred distribution of colored beads in the 10 000 container with a skewed 
distribution found by Group B 

Color 
Actual 

Frequency 

Inferred 

Frequency 

Dark pink 5821 6200 

Green 3179 2800 

Red 700 600 

Orange 200 200 

Yellow 88 0 

Blue 10 200 

Black 2 0 

Referring to the rule of their sampling model to use ten samples of size five with 

replacement, student S5 argued that “we got one blue bead in our sample which resulted in 

[a prediction of] 200 blue beads in the population since we collected too few beads [in our 

sample]”. Student S3 followed up on this statement and made some calculations: 

If we had collected 20 beads [instead of 5 beads] ten times we would have had 
collected a total of 200 beads. One collected blue bead under those circumstances 
corresponds to 0,5% [of the whole population]. Scaling up this blue bead then 
results in 50 blue beads which would had been more reasonable. 

Student S3 argued that an increase in sample size from five beads to 20 beads would have 

resulted in an inference of 50 blue beads instead of 200. According to S3 this would have 

been more “reasonable” in comparison to the actual ten blue beads in the population. When 

the students saw the discrepancy between the inference made based on their sampling 

model and the actual distribution, this triggered them to reconsider the relationship be-

tween the size of the sample and the inferences about the distribution of low frequency 

colors. The group concluded that collecting a larger sample when the population is larger 

will reduce the risk of making an inference that overestimates the low frequency colors. 

The example shows that when the students compared their results to the known distri-

bution, they started to re-evaluate their sampling model and argued for using larger sample 

sizes with larger populations. Group B was happy with taking ten repeated samples of size 

five for the smaller populations, but justified their reasoning for taking larger samples for 

larger populations by offering calculations of why their sampling model was not good 

enough for the 10 000 bead population. Nevertheless, the students did not revise their 

sampling model in the written work that the group handed in, possibly because they already 

had formulated and written an explicit formula as an answer. 
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Formalizing the relationships facilitating inferences 

In our analysis, we found that the students assumed that they were expected to find some 

type of formula at the end of the activity. Utterances such as “We first need to find a system 

that works for the other populations, so we need to find a formula to formulate a reasonable 

hypothesis” were found in several groups. All groups presented the rules and relationships 

in their final models about generating the samples in order to make inferences about the 

populations as either strict mathematical formulas or pseudo-mathematical formulas 

mixing natural language and mathematical notation. We found that the students’ sampling 

models could be characterized in terms of the rules developed by the students regarding (1) 

sample size, (2) the number of samples, and (3) replacement or no replacement.  

We found that all groups used the same fundamental strategy to make an inference about 

the distribution of colored beads in a population of N beads. Namely, students made a sta-

tistical inference about the distribution of colors based on scaling up the proportions found 

through their sampling model to the whole population. Further, six of the sampling models 

analyzed included rules to collect more than one sample (resampling) and all of them 

applied the rule of replacement: that is, putting a collected sample back into the population 

before taking the next sample. 

The rules determining the sample size and the number of samples collected in the 

sampling models were categorized as either fixed or dynamic. A fixed sample size or a fixed 

number of samples is a constant value that is independent of the size of the population. A 

dynamic sample size or number of samples varies depending on the situation at hand. This 

variation could, for example, take the form of an explicit functional dependence on the 

population size, or the variation could be a dynamic rule dictating different actions affecting 

the number of samples depending on what the previous sample revealed. The results of the 

categorization of the sample sizes and the number of samples used in the eight groups’ 

sampling models are shown in Table 4.  

Table 4. The groups’ sampling models characterized with respect to dynamic and fixed sample 
size and number of samples  

  Number of samples 

  Dynamic Fixed 

Sample size 

Dynamic 2 4 

Fixed 1 1 

Table 4 shows that most groups’ sampling models (four out of eight) used a fixed number 

of samples with a dynamic sample size as the basis for their inferences about a population. 

Two groups of students used dynamic rules for determining both the sample size and the 
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number of samples. Finally, two groups used fixed samples sizes. One of the groups used a 

fixed sample size in combination with a dynamic rule for determining the number of 

samples; whereas the other group used a fixed rule for the number of samples. In the 

following four sections, we illustrate the various types of sampling models the groups 

developed in each category and elaborate on why and how the groups developed their 

models. 

Dynamic sample size and fixed number of samples 

Four groups developed sampling models with rules where the number of samples collected 

is fixed (independent of the population size) but where the sample size is dynamic 

(dependent of the population size). One illustrative example in this category is Group D’s 

sampling model. The students in Group D began with the premise to only take a single 

sample since “that it is what is being done in real-life polling situations”. Group D’s rule for 

determining the sample size originated early in their discussion when the group concurred 

that they wanted to take one sample with a size dependent on the population size. The group 

set out to find an increasing function with a decreasing rate and used a calculator to explore 

different functions (for example log10 N, (log10 N)2, log2 N and ln N). After some trial and 

error, they decided to use a sample size that was equal to the square root of the population, 

√𝑁. When discussing the features of the formula the students realized that √𝑁 produced 

too small sample sizes for small populations. The students found this disconcerting but 

resolved the situation by modifying their rule to take a sample of √𝑁 + 5 beads. The stu-

dents argued that the additional 5 beads in the sample did not make a big difference for the 

sample size for large population, but that it made a big different for small populations, to be 

able to make a reasonable inference about the population. 

Dynamic sample size and dynamic number of samples 

Two of the eight groups developed a sampling model in which the rules for determining the 

number of samples and the sample size to base their inferences on both depended on the 

population size. Group C developed a breaking point rule for sample size depending on the 

population size as follows: “If the population size is less than 20, then use a sample size of 

10. If the population size is larger than or equal to 20, then use a sample size of 20 beads”. 

The students in Group C had found it convenient to use the sampling device which sampled 

about 20 beads. This group decided that 20 was a suitable sample size for larger popula-

tions. However, the rule of Group C shows a smaller sample size if the population is less than 

20. These students wanted to use the seventh container to explore their sampling model 

realistically, which to the students meant not using a sample size that equaled the size of 

the whole population. This exploration turned out to have consequences for how their rule 

specified the number of samples. 
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Group C’s initial rule for how many samples to take when the population is greater than 

20 was: “Take (size of population)/20 (rounded to nearest integer) samples of 20 beads with 

replacement”. The argument the students in Group C had for using a rule with a variable 

number of samples was to increase the number of samples proportionally to the population 

size to get a large enough set of samples to base their inferences on. However, when 

validating their initial rule using the seventh container (as discussed above, see Table 2), 

they were led to modify their rule by quadrupling the number of samples: “Take ((size of 

population)/20) ∙ 4 (rounded to nearest integer) samples of 20 beads with replacement”. In 

other words, Group C modified their initial dynamic rule to a dynamic rule specifying to take 

four times as many samples as first stipulated. 

Fixed sample size and dynamic number of samples 

One group used a fixed sample size and dynamic number of samples. Group E’s sampling 

model used a fixed sample size of ten beads. They used a dynamic rule for determining the 

number of samples (with replacement) to be four, eight and 16 samples for the 20, 400 and 

10 000-populations respectively. Based on how one realistically would collect samples in a 

general situation, the group argued that a fix sample size of ten was a feasible size, but that 

the number of samples needed to be larger for larger populations. The group discussed 

various alternatives for the number of samples for the three given populations, and finally 

agreed on four, eight and 16 samples out of esthetic reasons: “…yeah, having powers of twos 

is really neat and kind of beautiful”. 

Fixed sample size and fixed number of samples 

Only one of the groups’ sampling models developed rules for the sample size and the num-

ber of samples to be fixed and thus independent of the population size.  Group B’s initial rule 

was to use one sample of size four. However, after having difficulties with actually catching 

the beads in the sampling device, they realized that they (a) needed to take multiple samples 

and (b) needed to find a way to make sure each sample caught the same number of beads. 

After a brief discussion, they decided to use a fixed sample size of five beads and to take a 

fixed number of samples (ten samples) with replacement regardless of the size of the 

population. 

Discussion and conclusions 

The students’ developing sampling models examined in this paper highlight the complexi-

ties of the ideas the students struggle with in making inferences about a population with 

respect to a categorical variable with nominal values. Since this topic has not been well 

researched, either from a theoretical statistical or an educational point of view, the use of 

the models and modeling perspective facilitated an approach to gain new insights into 
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students’ reasoning using the design of a sense-making activity for students using hands-on 

materials that elicited their ideas. In addition, the models and modeling perspective helped 

make the nuances of the students’ reasoning visible in terms of students’ rules for taking 

samples, their operations on and properties of collected samples, and their ideas about the 

relationships between the collected samples and a given population.  

The two first themes characterizing the relationships between the samples and a 

population used by the students (catching the low frequency colors and not overestimating 

the low frequency colors) might in part be a consequence of the design of the task the 

students worked on. The task included the seventh container with its distribution (nine red, 

five green, five orange, one yellow bead) and the first question in the task asked about the 

number of different colors in a container. The data showed how the single yellow bead 

influenced the students’ thinking and their resulting sampling models by engaging in self-

evaluating and revising their developing models (Ärlebäck & Doerr, 2014; Lesh & Doerr, 

2003). Experimenting and testing their developing sampling models on the seventh 

container led the students to revise their initial models by adjusting the sample size, the 

number of samples, or how to manipulate the collected samples to be able to make 

reasonable inferences about the population. In terms of sample representativeness and 

sample variability (Ben-Zvi et al., 2015), the students’ strongly expressed concern to catch 

all the colors – and especially the yellow bead – showed that students’ understanding of 

sample representativeness was given primacy over sample variability. At the same time, we 

saw that Group B’s overestimation of a low frequency color in a large population led the 

students to adjust their sampling model to counter such unreasonable inferences. This 

suggests that a recognition of the role of sample variability is emerging in the students’ 

thinking. Indeed, one way the students attempted to incorporate a balance between sample 

representativeness and sample variability (Saldanha & Thompson, 2002; Shaughnessy, 

2007) in their developing models was by introducing rules for multiple samples in their 

sampling models. Using multiple samples in their models addressed the concern of the 

students to catch all low frequency colors since the more samples that were collected 

increased the likelihood of capturing all colors. In addition, examining the collection of 

samples provided a way to not overestimate the low frequency colors when scaling up 

proportionally to the whole population. 

Three aspects of the task design should be noted. First, the two questions in the task, 

intended to elicit students’ ideas, are very different in nature. The first question asks for an 

inference about a single variable (the number of colors), and the second question asks for 

the entire distribution of all the values the categorical variable can take in the population. 

Based on our data and analysis, it appears that the fact that the students were presented 

with, and hence considered, both questions simultaneously affected the students’ thinking 

and the development of their sampling models. Hence, it is possible that some students’ 
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ideas with respect to the two questions were conflated as they developed their models. 

Second, the data suggest that the sampling device might have unintentionally limited the 

students’ thinking and prompting them to use a sample size of 20 rather than to approach 

the issue of deciding on the sample size based on their own ideas. Both these aspects may 

have acted to limit students’ autonomy in developing their sampling models. These aspects 

could be modified in a redesign of the task and examined in future research. Third, the 

chosen sizes of the given populations (N = 20, 400, 10 000) were aimed at promoting the 

students to think about the potential role of population size in their sampling models. The 

20 bead population size might have created ambiguity for some of the students since the 

two main questions in the task are effortlessly fully determined by sampling all 20 beads. In 

a redesign of the task, we would suggest to only focus on the second question of the task, to 

use a more flexible sampling tool, and to use population sizes of N = 100, 1 000 and 10 000. 

Given these adaptations combined with a follow-up whole-class discussion of the students’ 

sampling models, we suggest that the task could be productively used with secondary level 

students.  

One of the conclusions of this study is that the concerns and challenges students have in 

understanding and balancing sample representativeness and sample variability, docu-

mented when working with single value statistics such as mean, median, mode and propor-

tions (Batanero et al., 2020; Ben-Zvi et al., 2015; Lipson, 2003; Saldanha & Thompson, 2002; 

Shaughnessy, 2007), are also found in the case of categorical variables taking nominal 

values. Further, our focus on the students’ reasoning and developing sampling models 

extends the work done on interpretation of tables and graphs representing categorical data 

(Budgett & Puloka, 2019; Casey et al., 2018a; 2018b) by considering both distributions of a 

categorical variable when the number of values is greater than two. In addition, the present 

study extends the scope of the prior work focusing on categorical variables by examining 

approaches to sampling a categorical variable and drawing inferences based on the samples. 

Future research 

The result of this study provides insights into how the task used could be redesigned to give 

more options to students to use their own ideas with respect to choosing the sample size to 

use. A redesign of the sampling device or the provision of multiple sampling devices could 

more effectively facilitate the sampling procedure, without limiting the students’ thinking. 

In addition, separating the two questions in the task to investigate students’ reasoning in 

each separate situation and what sampling models they then develop appears to be a logical 

next step to take. Given that the two questions are so different in nature, it might be 

productive to investigate the students’ developing sampling models when they only are 

presented with one of the questions, to see how they deal with sampling categorical data 

when a single statistic is sought such as number of values or the proportion of values or 
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when the whole distribution of a given attribute of a categorical variable is the achievable 

objective. In particular, it could be interesting to look further at students’ reasoning when 

they draw inferences on categorical values, especially in connection to the students’ use of 

bootstrapping ideas (Engel, 2010; Hesterberg, 2006; McLean, 2015) since ideas about 

multiple consecutive samples emerged in the work of the students. 
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