
Quadrante: Revista de Investigação em Educação Matemática  

 https://doi.org/10.48489/quadrante.23658 

Received: February 2021 / Accepted: September 2021  

 

Mathematical modelling in scientific contexts and in Danish upper 
secondary education: are there any relations? 

A modelação matemática em contextos científicos e no ensino 
secundário dinamarquês: existem relações? 

Britta Eyrich Jessen  

Department of Science Education, University of Copenhagen 

Denmark  

britta.jessen@ind.ku.dk 

Tinne Hoff Kjeldsen  

Department of Mathematical Sciences, University of Copenhagen 

Denmark  

thk@math.ku.dk 

Abstract. Mathematical modelling and applications have been agreed upon as a justification for the 

teaching of mathematics at several levels of educational systems across the world – and as a core 

element of the teaching itself. Despite several theoretical constructs describing the teaching and 

learning of mathematics, we still face challenges regarding its learning, what should be learned, and 

if it should reflect scientific practices. Didactic transposition theory offers an approach for how to 

analyse the relation between the scholarly knowledge, notions and practices that motivated the 

knowledge taught at school and what shaped it. In this paper we analyse the external didactic 

transposition through modelling cases from the 20th century and the framing of modelling in Danish 

upper secondary mathematics. We use our analysis to discuss if potentials are lost in the 

transposition and how these can be brought into play. 

Keywords: didactic transposition; history of mathematics; mathematical modelling; upper secondary 

mathematics education. 

Resumo. A modelação matemática e as aplicações têm merecido concordância enquanto argumentos 

para o ensino da matemática, em vários níveis, nos sistemas educacionais em todo o mundo, sendo 

igualmente considerados como um elemento central do próprio ensino. Apesar da existência de 

vários construtos teóricos que descrevem o ensino e a aprendizagem da matemática, continuamos a 

enfrentar desafios em relação à sua aprendizagem, ao que deve ser aprendido e se isso deverá refletir 

as práticas científicas. A teoria da transposição didática oferece uma abordagem para analisar a 

relação entre os saberes académicos e as noções e práticas que deram origem aos saberes ensinados 

na escola e em que moldes. Neste artigo, analisamos a transposição didática externa por meio de 
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situações de modelação do século XX e o enquadramento da modelação matemática no ensino 

secundário dinamarquês. Usamos a análise produzida para discutir se as potencialidades são 

perdidas na transposição e perceber como podem ser efetivadas. 

Palavras-chave: transposição didática; história da matemática; modelação matemática; educação 

matemática no ensino secundário . 

Introduction 

The notion of mathematical model and modelling took form and entered the discourse of 

mathematics during the 20th century with the increasing mathematization of a variety of 

fields such as economics, climate science, biology, medicine and more. The emergence of 

mathematical modelling is now reflected in mathematics curricula across the world, where 

it takes the role of content knowledge and is part of the justification for the teaching of 

mathematics (Blum et al., 2007). In educational research various approaches, theoretical 

developments and empirical studies on how to teach and learn mathematical modelling 

have been developed (e.g., Ärlebäck & Doerr, 2015; Barquero et al., 2013; Blomhøj & 

Kjeldsen, 2006; Niss & Blum, 2020). One theoretical construct is the modelling cycles (e.g., 

Niss & Blum, 2020), which depict sub-competencies and processes involved in modelling 

activities. The cycles have taken prominent roles in curricula documents, as we show below.  

Still, it has been questioned if they depict the reality of modelling (Biehler et al., 2015). 

Educational researchers have argued that “different variations of the modelling cycle are 

analytical tools for analysing the sub-processes . . . involved in mathematical modelling 

competency” (Blomhøj, 2011, p. 343), the cycles are not meant to depict reality. Without 

taking sides, we believe this raises a central question concerning what relation, if any, can 

be found between mathematical modelling inside and outside of the school context.   

To pursue this question, we draw on the notion of didactic transposition, which stems 

from the work of Chevallard (1985). The didactic transposition is characterised as the 

“transformations an object or a body of knowledge undergoes from the moment it is 

produced, put into use, selected, and designed to be taught until it is actually taught in a 

given educational institution” (Chevallard & Bosch, 2020, p. 214). The transposition is often 

depicted as in Figure 1: scholarly knowledge represented by research institutions and other 

producing institutions; knowledge to be taught shaped by the noosphere and accessible 

through curricula documents; the taught knowledge that can be observed in the classroom 

and teachers’ lesson plans, and which also provide insights about learnt knowledge, which 

further can be studied in the work done by the students. The study of those components for 

a specific topic in a specific educational context provides an epistemological reference 

model that allows us to question choices made in the educational system. The transposition 

between scholarly knowledge and knowledge to be taught is the external transposition, 
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which we wish to analyse for mathematical modelling. This kind of analysis enlarges the 

empirical unit of analysis when we pay attention to the nature, the origin and the initial 

function of the mathematics that is being taught and learned in school (Bosch, 2015). Thus, 

we study the external didactic transposition of modelling from when it emerged in research 

to its place in school today.  

 
 

Figure 1. The didactic transposition of knowledge in school systems (according to Bosch and 
Gascón (2014, p. 70)) 

A first step towards an external didactic transposition of mathematical modelling has 

been taken by Frejd and Bergsten (2016). They investigated modelling as a professional 

task in the workplace representing scholarly knowledge as it is produced and used in 

private companies and research. They argue that modelling as a professional task is highly 

compartmentalised and identified major differences between modelling in workplaces and 

in school. They concluded that the influence of scholarly knowledge on school mathematics 

in Sweden is weak. In the present paper we conduct a similar investigation but with focus 

on modelling as a scientific practice. Our approach aligns with Wijayanti and Bosch (2018) 

by drawing on historic documents. Our analysis of such documents is not complete but 

captures traits of scholarly knowledge regarding the development and uses of mathematical 

modelling in scientific contexts. Our study has been guided by the following question: Based 

on the external didactic transposition, what relation – if any – can be identified between 

mathematical modelling in scientific contexts, as represented by three different cases from 

the 20th century, and the framing of teaching mathematical modelling at upper secondary 

level in Denmark?  

Our analysis is divided into two parts: first we present the analysis of one historic case 

from the mathematization of economics and two cases from biology, and second, we analyse 

the knowledge to be taught in terms of ministerial guidelines, textbooks and exam exercises 

from Danish upper secondary school. The analysis is guided by the didactic transposition 

methodology and variables we present below.  
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Methodology 

As Wijiyanti and Bosch (2018), we adopt the didactic transposition methodology as 

described by Bosch and Gascón (2014). To analyse practices through historic examples is 

well known in other research communities, where such studies shed light on practices 

applying mathematics and the entanglements of mathematics with methods of other 

research fields (see, for example, Dalmedico, 2001; Knuuttila & Loettgers, 2017). Our cases 

represent early attempts of the migration of mathematics into new fields of inquiry in which 

mathematical modelling currently plays a significant role as a scientific practice. The model 

constructions are accessible for non-specialists and the cases provide a window into 

“modelling in the making”. The modelling was subject to criticism from researchers in the 

target discipline, which gives us insights into barriers of understanding, differences in 

approaches to knowledge production, and discussions of epistemic value of modelling 

across disciplines. 

Bosch and Gascón describe knowledge to be taught as that which “can be accessed 

through official programs, textbooks, recommendations to teachers, didactic materials, etc.” 

(2014, p. 71). In Denmark, the teaching of mathematics is regulated by the national 

curriculum including the high stake exit exam. In this paper we restrict ourselves to general 

upper secondary school (gymnasium), which is attended by approximately 60% of the 

youth (Danish Ministry of Education, 2021).  

We have constructed our model of analysis (Table 1) by combining Bosch’s (2015) 

emphasis on the need to pay attention to the motivation, origin, and function of what is to 

be taught and learnt in the didactical transposition with elements from Boumans’ (2005) 

methodology of models1. Boumans argues that there are implicit criteria (satisfying 

mathematical or other requirements, being useful for policy, etc.) that models have to meet. 

This is done by integrating various items (like baking a cake with various ingredients) in the 

model construction. The items include analogies, mathematical concepts and theories, 

theoretical notions, and empirical data, which are the ones we have used in our analyses 

(see Table 1). Regarding the model function, we use Gelfert’s (2018) notion of exploratory 

modelling, which will be explained below. Furthermore, we have added modelling strategy 

and discussion of epistemic value in our model of analysis as important aspects for 

understanding disputes between various actors. 
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Table 1. The variables and categories guiding our analysis of scholarly knowledge and 
knowledge to be taught 

Meta aspects  Items used in modelling construction  Model 

function 

 

Motivation 

 

Modelling 

strategy 

Discussion 

of 

epistemic 

value 

 Analogies Mathematical 

concepts and 

theories 

Theoretical 

notions 

from other 

areas 

Empirical 

data 

 Explorative 

function 

(1-3) 

Analysis I: scholarly knowledge of mathematical modelling activities 

Economics and new mathematics 

Our first example is von Neumann’s (1937) paper Über ein ökonomisches Gleichungssystem 

und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Historians of economics 

have coined this paper “the single most important article in mathematical economics” 

(Weintraub, 1983, p. 13). It was translated into English in 1945 with a change in title: “A 

Model of General Economic Equilibrium”. Von Neumann considered a general economy 

where 𝑛 goods (𝐺1, … , 𝐺𝑛) are produced by 𝑚 processes (𝑃1, … , 𝑃𝑚), and he asked the 

question: “Which processes will be used (as ‘profitable’) and what prices of the goods will 

be obtained?” He mathematized the problem as a system of six linear inequalities: 

 (1) 

 (2) 

 (3) 

 (4) 

, for all j (5) 

where if ‘<’ holds.  

, for all i                (6) 

where 𝑥𝑖 = 0 if ‘>’ holds.  
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Here aij (expressed in some unit) denotes the amount of Gj that is consumed in the 

process Pi, and bij denotes the quantity of Gj that is produced by the process Pi. The 

intensities of the processes are (x1, …, xm) while (y1, …, yn) represent the prices of the goods. 

Finally,  is the expansion factor and  is the interest factor. The inequalities in (5) assure 

that it is impossible to consume more of the good Gj than the amount produced. If less is 

consumed, Gj becomes a “free” good and its price . The inequalities in (6) indicate 

that there is no profit in the model – everything gets re-invested. If there is a loss, i.e., if strict 

“>” holds, the process Pi will not be used and 𝑥𝑖 = 0 (von Neumann 1937, pp. 75-76). This 

mathematization turned the question of existence of economic equilibrium into the 

question of existence of a solution to the above system of inequalities. Von Neumann’s result 

in the paper was to prove that a solution exists. For this, he used fix-points techniques, and 

needed an extension of Brouwer’s fixpoint theorem, which he proved in the paper.  

The purpose of von Neumann’s model was not to solve a concrete economic problem, but 

to develop economic theory. His approach was to set up an abstract structure for a general 

economy. His model was not evaluated against a reality outside of mathematics, but against 

internal mathematical consistency, namely, the existence of a solution to the system of 

inequalities. The (lacking) relationship between reality and the model was criticized by the 

economist Champernowne (1945, pp. 10-12): 

Approaching these questions as a mathematician, Dr. Neumann places emphasis on 
rather different aspects of the problem than would an economist . . . The paper is 
logically complete . . . But at the same time this process of abstraction inevitably 
made many of his conclusions inapplicable to the real world . . . 

Champernowne ends with the warning that “utmost caution is needed in drawing from 

them [von Neumann’s results] any conclusions about the determination of prices, 

production or the rate of interest in the real world” (1945, p. 15). This warning illustrates 

that there is not necessarily an agreement about what counts as a “solution”, when 

mathematics is used in other fields of inquiry – it depends on the context. It relies on the 

disciplinary lens used, especially when new modes of inquiry are under development. It 

shows how scientists from different areas might disagree about the epistemic value of 

model results. Despite Champernowne’s critic, von Neumann’s model has played a 

significant role in the development of theoretical economics (Dore et al., 1989).   

Biology and dynamics from physics 

Our second example is Volterra’s initial work on the Lotka-Volterra equations of predator-

prey systems during the mid 1920’s. The biologist D’Ancona had compared fishery statistics 

from the Upper Adriatic before, during, and after the Second World War. He observed that 

the reduced fishing seemed to be more favourable for the predator fish than for the prey, 

and asked Volterra if he could explain this phenomenon (Volterra, 1926). 

0jy
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Volterra approached the problem in accordance with methods of classical mechanics 

focusing on internal causes and disregarding external ones (friction from the environment).  

It is not obvious how methods of mechanics can be transferred to the predator-prey system 

and used to grasp the underlying mechanism in the biological system. Volterra commented 

this by saying: 

on account of its extreme complexity the question might not lend itself to a 
mathematical treatment, and that on the contrary mathematical methods, being 
too delicate, might emphasize some peculiarities and obscure some essentials 
of the question. To guard against this danger we must start from the 
hypotheses, even though they be rough and simple, and give some scheme for 
the phenomenon. (Volterra, 1928, p. 5) 

He constructed a hypothetical system that only took the predatory and fertility of the co-

existing species into account. He assumed that prey and predator increase and decrease 

continuously in order to be able to apply the mathematics of differential calculus, that the 

system is homogenous, that the birth rate of the prey is constant, and that the number of 

predators decreases exponentially if there is no prey it can feed on. To describe the 

mechanism of predation, he followed a mechanical analogy. He assumed that the number of 

encounters between prey and predator is proportional to the product of the numbers of the 

two species, as the number of collisions between particles of two gasses is proportional to 

the product of their densities. He assumed that the interaction between two competing 

species depends on the number of collisions. He called it “the method of encounters”.  He let 

𝑁1 denote the number of prey, 𝑁2 the number of predators and t the time. The above 

assumptions then led Volterra to the equations now known as the Lotka-Volterra equations 

(Volterra, 1927/1978, p. 80): 

 
𝑑𝑁1

𝑑𝑡
= (𝜀1 − 𝛾

1
𝑁2)𝑁1 

𝑑𝑁2

𝑑𝑡
= (−𝜀2 − 𝛾

2
𝑁1)𝑁2 

Volterra’s mathematical analyses of the system showed its now well-known periodic 

cyclic behaviour of the species and confirmed D’Ancona’s observation. Volterra was 

concerned with the relation between the empirical data and the mathematical system. 

D’Ancona was not convinced that Volterra’s theory could be validated by the empirical data. 

This, however, did not make D’Ancona reject Volterra’s biomathematics. Israel (1993) has 

interpreted this as indicating a shift towards a more modern abstract modelling approach. 

In D’Ancona’s opinion, Volterra’s theory did not need to be supported by empirical data: 

My observations [of the fisheries in the Upper Adriatic] could be interpreted in 
the sense of your theory, but this fact is not absolutely unquestionable: it is only 
an interpretation . . . You should not think that my intention is to undervalue the 
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experimental research supporting your theories, but I think that it is necessary 
to be very cautious in accepting as demonstrations these experimental re-
searches. If we accept these results without caution we run the risk of seeing 
them disproved by facts. Your theory is completely untouched by this question. 
It lays on purely logical foundations and agrees with many well-known facts. 
Therefore it is a well-founded working hypothesis from which one could devel-
op interesting researches and which stands up even if it is not supported by 
empirical proofs. (D’Ancona to Volterra 1935, quoted from Israel, 1993, p. 504) 

In Volterra’s approach, methods and theories from other fields (including mathematics) 

guided his construction of the equations. D’Ancona’s letter shows that it can make sense and 

lead to new insights to investigate a mathematical model derived from a concrete 

phenomenon even if it cannot be confirmed by data. The system was criticised for not taking 

predator’s adaption to new conditions into account (Knuuttila & Loettgers, 2017). This 

critique might relate to the crossing of disciplinary boundaries, discussions and disagree-

ments about the relationship between reality and model, as we saw in the von Neumann 

case as well. 

Wrong but rich explorations 

Our last example is Rashevsky’s attempt to derive a physical-mathematical explanation of 

cell division. He was a pioneer in mathematical biology (Abraham, 2004), and, even though 

his approach to explaining cell-division failed, his work shows ways of how scientists work, 

explore and think about the use of mathematics to gain insights into phenomena outside of 

mathematics. He explained his ideas to biologists at a symposium for quantitative biology 

in 1934 where he got into a debate with the biologists. His talk and the following discussion 

are published in Rashevsky (1934). In the introduction, Rashevsky carefully explained his 

scientific views, his methodology and his presumptions: 

Unless we postulate some factors unknown to the inorganic physical world . . . 
it is simply a logical necessity, free of any hypothesis, that some physical force 
or forces must be active within the cell to produce a division of the latter into 
two or more smaller cells . . . If however we entertain the hope of finding a 
consistent explanation of biological phenomena in terms of physics and 
chemistry, this explanation must of necessity be of such a nature as the 
explanation of the various physical phenomena. It must follow logically and 
mathematically from a set of well defined general principles. (Rashevsky, 1934, 
p. 188) 

Rashevsky argued that in order not to assume some independent mechanism “we must 

take some such general phenomenon [that occur in all cells] and investigate its mathe-

matical consequences” (1934, p. 188). He chose metabolism and made an analogy of cell 

division to the physical phenomenon of droplets. He conceptualized a cell as a liquid system 

that takes in some substances from the surrounding medium and transforms them. He 
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treated it as “a phenomenon of diffusion governed for a quasi-stationary state by the equa-

tion 𝐷∆2𝑐 = 𝑞(𝑥, 𝑦, 𝑧) where 𝐷 denotes the coefficient of diffusion, 𝑐 the concentration, and 

𝑞(𝑥, 𝑦, 𝑧) the rate of consumption of the substance” (Rashevsky, 1934, p. 189).  

At the level of molecules, he then derived expressions for the forces produced by a 

gradient of concentration: the force exerted on each element of volume of the solvent by the 

solute, the force acting on each volume as a result of osmotic pressure, and the force of 

repulsion between molecules.  By adding these three forces, he found an expression for the 

force per unit volume produced by a gradient of concentration2. He then made further 

idealizations to homogenous and spherical cells, which as he explained “will give us a 

general qualitative picture of various possible phenomena” (Rashevsky, 1934, p. 191). 

These idealizations made it possible for Rashevsky to calculate the surface and volume 

tension of the cell, and he deduced that when the cell reaches a certain size, a division of the 

cell will result in a decrease of the free energy of the system. Based on the principle of free 

energy, he then concluded that his investigations had established “the necessary but not the 

sufficient conditions for spontaneous division” (Rashevsky, 1934, p. 192).  

Rashevsky’s (1934) ambition was to build a mathematical biology similar to mathe-

matical physics. His approach is theoretical and hypothetical, addressing causal 

relationships and analysing these. He drew analogies to droplets and physical liquid 

systems, and used differential equations. From physics, he further used notions of physical 

forces and the principle of free energy.  

The biologists criticized Rashevsky’s modelling. They wanted to know what was “the 

nearest example in nature to this theoretical case” (Rashevsky, 1934, p. 195). They 

questioned Rashevsky’s explanation as a general solution, since “a spherical cell isn’t the 

commonest form of a cell”, as the biologist Davenport emphasized (p. 198). Rashevsky 

defended his simplification of the cell’s shape by emphasising that this systematization 

allowed him to investigate the liquid system and mechanisms potentially responsible for 

the division.  While Rashevsky found it a promising result, the biologists found it irrelevant. 

They were not interested in imaginative explanations.  

Comparing the three cases 

If we compare the three cases with respect to motivation, modelling strategy and discussion 

of epistemic value, we see various differences among the three cases. If we analyse them 

with respect to “items” that went into their modelling constructions, we identify analogies, 

mathematical concepts and theories, theoretical notions from other areas and empirical data. 

We have summarized the differences and the similarities found in our analyses of the 

historical cases in Table 2. 
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Table 2. Illustration of our methodology and summary of the results of our analyses of the 
historical cases 

  Von Neumann Volterra Rashevsky 

Meta aspects Motivation Develop economic 

theory 

Explain a concrete 

phenomenon due 

to reduced fishing 

Explain cell 

division in terms 

of physics and 

chemistry 

Strategy Abstract 

mathematical 

structure of a 

general economy 

Simple 

hypotheses, 

simplifications 

and idealizations 

Conceptualized a 

cell as a liquid 

system that 

transforms 

substances 

Discussion of 

epistemic value 

Existence of 

solution/internal 

consistency vs, 

lack of reality/not 

useful 

Verification 

through data vs. 

purely logical 

foundation 

Possible 

explanation, 

promising vs. 

imaginary causes, 

irrelevant 

Items used in 

modelling 

construction 

Analogies  Collisions of 

molecules 

Physical 

phenomenon of 

droplets 

Mathematical 

concepts / 

theories 

Linear inequalities, 

fix-point 

techniques 

Calculus, systems 

of differential 

equations 

Differential 

equation 

(diffusion 

equation), 

integration 

Theoretical 

notions from 

other areas 

 Method of 

encounters 

Physical forces, 

surface/volume 

tension, free 

energy, principle 

of free energy 

Empirical data  Served as 

motivation not as 

verification 

Served as control 

not as verification 

Model function Explorative 

function 1., 2., 3. 

2. Proof of 

principle 

2. Proof of 

principle 

3. Possible 

explanation 

1. Starting point 

3. Possible 

explanation 

 

With regard to the “function” of the models, we use Gelfert’s work on exploratory 

modelling. He finds that “models . . . allow us to extrapolate beyond the actual, thereby 

allowing us to also explore possible, e.g. counterfactual, scenarios” (Gelfert, 2018, p. 8). He 

distinguishes between three functions of explorative models: 1) to find a starting point for 

future investigations, e.g. when an underlying theory is not known; 2) to provide proof of 

principles; and 3) to offer potential explanations. All three functions are present in our 
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historical cases. We find Rashevsky’s modelling of cell division to be a prime example of 

explorative models, which functioned both with the aim to find a starting point, a promising 

way to advance in the search for the explanation of cell division, and it also managed to offer 

a possible explanation. Von Neumann’s model can be analysed in terms of Gelfert’s second 

function, as proof of principle provided by the mathematical so-called existence proof of the 

existence of equilibrium. Finally, Volterra’s model (which is also used by Gelfert) is an 

explorative model that functioned both as a proof of principle that “differential equations is 

suitable for generating insights into the dynamics of (discrete) population” (Gelfert, 2018, 

p. 12), and it provided a potential explanation for the observed phenomenon. In Table 2, 

“model function” refers to these three explorative functions of Gerlfert.    

Analysis II: knowledge to be taught 

In Denmark, an experienced upper secondary mathematics teacher is hired by the Ministry 

of Education to support and guide the development of curriculum, exam exercises, etc. 

Together with representatives from the Ministry, this teacher manages the groups in 

writing the drafts for curriculum, the ministerial guidelines, and the written high stake exit 

examinations. Those groups consist of other experienced teachers and representatives from 

the noosphere. The high stake exit examination serves as entrance examination for higher 

education and the majority of the students are to be assessed in the written exam. Upper 

secondary is not mandatory in Denmark. It is a secondary education for youth, who wants 

to pursue higher education. Mathematics can be studied at A, B and C level, A being the most 

advanced. In this paper, we focus on level B, since the vast majority of students are 

completing mathematics at this level. There is no license for textbook writers in Denmark, 

and often textbooks are authored by the experienced teachers involved in reform efforts 

and forming the written exam. Textbooks are published by private publishers (see Jessen et 

al., 2019). The latest reform was implemented in 2017. Exams following the reform have 

been held every June, August and December since 2018. We have analysed all of the exam 

exercises for level B, identified exercises being related to modelling as those which tend to 

describe a real world situation, ignoring those requiring statistics. We have also analysed 

the three most commonly used textbooks (Carstensen et al., 2018; Clausen et al., 2018; Grøn 

et al., 2017) written on the basis of the curriculum and ministerial guidelines.  

Ministerial guidelines 

The ministerial guidelines state that mathematics covers a number of methods for 

modelling and that students should become able to: 

apply functions to construct models describing data and knowledge from other 
disciplines, analyse mathematical models, create simulations, predictions and 
reflect upon the idealistic nature of models and their domains . . . including the 



48 B. E. Jessen, T. H. Kjeldsen 

 

Quadrante 30(2) 37-57 

 

treatment of more complex problems. (Danish Ministry of Education, 2017, p. 
1) 

The curriculum is formulated in terms of competencies (called disciplinary goals) and 

content goals (Niss, 2018), where the latter covers: “principle properties for mathematical 

models with applications of the above mentioned [linear, polynomial, exponential and 

power] functions and combinations hereof” (Danish Ministry of Education, 2017, p. 2). 

Modelling is part of both content and competences students should acquire. The ministerial 

guidelines further state that “students are expected to apply functions for modelling 

purposes . . . and they are expected to gain knowledge about the phases of a modelling cycle” 

(Danish Ministry of Education, 2020, p. 14). The guidelines provide no explicit description 

of a cycle. It is required that teachers must “connect content area across domains . . . that 

students should learn to engage with new atypical modelling problems” (Danish Ministry of 

Education, 2020, p. 1). The phrase “new atypical modelling problems” is a broadening of the 

perspective on modelling compared to previous curricula.  

Referring back to our Table 2 for analysis, the ministerial guidelines nurture the idea of 

students being able to combine different disciplines to solve more complex problems from 

the real world. The approach they suggest (without specifying) is for the students to gain 

knowledge about the phases of a modelling cycle. There is no mentioning of potential 

discussion of epistemic value, nor if analogies are relevant tools for modelling. The phrase 

“new atypical modelling problems” could encompass exploratory modelling for deriving 

possible explanations (see Table 3 ahead). 

Exam exercises 

As it has been stated several times during the last century, backwash of exams on classroom 

activities is dominant (Suurtamm et al., 2016), which is why we have analysed all level B 

exam exercises in the period 2018-2020. The exercises were categorised by what mathema-

tics was needed to solve them (analytic geometry, statistics, combinatorics, etc.), and if they 

describe situations outside of mathematics. Exercises explicitly describing a real world phe-

nomenon have been characterised as modelling exercises. Those often require students to 

carry out a regression or calculations using their CAS-tool.  

An example of a modelling exercise is exercise 10, from August 2019. The students were 

given the expression:  

𝐸(𝑥) = 0.0001 ∙ 𝑥2 +
2000

𝑥
, 20 < 𝑥 < 300 

where 𝐸(𝑥) denotes the variable costs per good (in Dkk), when producing 𝑥 goods. The 

students were asked to determine how many goods are to be produced to reach costs of 25 

Dkk. Secondly, the students were asked to determine how many goods correspond to the 

lowest costs possible. The context of the problem plays no role at all, as the students are 
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given an expression and asked to solve 𝐸(𝑥) = 25, to find 𝐸′(𝑥) and solve 𝐸′(𝑥) = 0 with 

respect to 𝑥. The last part can also be done, if students graph the function using their CAS-

tool and find the minimum of the function in the domain or use the solve command. Nowhere 

in the exam exercises from 2018-2020 are the students asked to reflect upon the model or 

to construct models themselves. This finding aligns with a study by Frejd (2013), where 

only limited elements of modelling processes are assessed in exam exercises.  

The exam exercises serve the purpose of assessing students’ ability to apply the notion 

of function, apply certain types of functions and, in some cases, basic calculus to a 

mathematized part of the real world. This covers the mathematical concepts and techniques 

used. In exercises asking the students for regressions, data are provided. However, most of 

our variables in the analysis is not present in the exam exercises, which might reflect the 

challenge of assessing more complex practices of modelling.  

Textbooks and mathematical modelling  

The first book of our analysis, Carstensen et al. (2018), is a grade 11 book in a series, where 

the grade 10 book introduces the notion of function, linear, exponential and power functions 

using examples where these functions describe real world “relations” as they call them, 

without using the notion of model. The grade 11 book has 10 chapters on mathematical 

domains and the last three chapters are addressing “Supplementary content”, covering 

“Third degree polynomials”, “Irrational numbers and pi” and “Mathematical models”.  

The authors introduce the chapter on models by stating:  

When mathematical methods are applied on (more or less) realistic problems 
we call this applied mathematics, or that you create a mathematical model . 
. .  We here present some examples of models, which illustrate the manifold of 
applications. (Carstensen et al., 2018, our translation, authors’ bold face)  

The first example concerns a football fan who wants to know the optimal seating in a 

stadium having the widest angle towards the goals. The modelling problem is addressed 

from two different theoretical standpoints: the functional method and the geometric 

approach. The students are invited to take part in solving the optimization problem. The 

models are given to the students as Figure 2 shows, by a sketch of the situation.  

  
Figure 2. The sketches supporting the modelling of the optimization problem of football 

stadium seating in the functional approach (Carstensen et al., 2018) 
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The students are asked to complete six exercises, to answer the modelling problem. Here 

the steps of developing the model are given to them, and they are asked to check that the 

formulas are correct in relation to the sketches in Figure 2. One example is:  

Apply the cosine relations on ∆𝑃𝑇𝑄 and show, that you get: 

cos 𝑣 =
𝑥2 + 𝑎𝑏

√(𝑥2 + 𝑎2)(𝑥2 + 𝑏2)

 

(Carstensen et al., 2018, exercise 2, chapter 13.1) 

This does not give the students experience with the construction of models. The chapter 

further presents three other modelling problems. The first is a version of the “couch 

problem” (e.g., Moretti, 2002). The second problem concerns a cylinder lying down where 

the problem is how to measure the volume of the fluid in the cylinder only knowing the 

height of the fluid. The situation is depicted by a diagram, such as illustrated in Figure 2, and 

students are guided to an answer through seven exercises. The last problem describes “A 

mechanical device which can be described as a right-angled triangle” where students 

through nine exercises determine where to place another right-angled triangle inside of the 

first one fulfilling specific conditions. The real world plays no role in this problem and 

students get no information about the device or what it can be used for. The tasks are on 

pure mathematics combining geometry, algebra and differential calculus. 

The book series also have a volume of exercises corresponding to the chapters of the 

textbooks. However the last three chapters are covered by “A mixture of exercises”. These 

are of the same nature as the exam exercises. In none of them are the students invited to 

construct models, mathematize the real world or reflect upon modelling results.  

The second textbook in our analysis has a chapter on modelling (Clausen et al., 2018). 

The chapter begins with a narrative of applications of mathematics in other disciplines and 

a short presentation of an example of a modelling process. The introduction to the notion of 

modelling starts by: “Mankind’s desire to understand his environment serves two main 

purposes, firstly to explain, perhaps satisfying man’s curiosity, and then to use the 

knowledge to advantage” (John D. Donaldson in Clausen et al. (2018, p. 54)). A brief 

description of the use of models for quantitative and qualitative answers is given. A general 

process for modelling is outlined, as: identify patterns, choose state variables, obtain 

relationships connecting the variables, obtain mathematical solution and compare the 

solution with the physical situation (Clausen et al., 2018). It is later stated that a model can  
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have a limited domain but be useful for predictions. The process is depicted as shown in 

Figure 3. 

Figure 3. The modelling process as it is depicted in (Clausen et al., 2018, p. 62) as a translation 
from real world to mathematics and back 

The examples of the book cover: folding a piece of paper, the maximum size of a barge in 

a canal, and how to model sea level according to tides, air pressure and height above sea 

level, the age of dinosaur bones and an example of assumptions made during a modelling 

process on optimal speed limits on main roads. The last example leads to unrealistic results. 

The authors seek to remedy this by asking students to redo the calculations of the model 

changing variables to specific numbers. None of the examples invite students to explore the 

models themselves (Clausen et al., 2018). The very last section of the chapter is called “More 

on models” and lists what can be modelled, where models are used in financial and political 

decision making and discuss if we can trust models, but no concrete examples are provided. 

The exercises connected to this chapter are similar to the example provided above from 

Carstensen et al. (2018). 

The first chapter in our last textbook is titled “Mathematical modelling using functions” 

(Grøn et al., 2017, p. 26). The chapter begins by summarising the grade 10 book’s focus on 

variables and states that emphasis will be on representations: formula, data sets, graphs 

and “explained by words”. The notion of function is introduced through a descripton of the 

historic origin of optics and colours of the rainbow, including theory from physics, leading 

to different mathematical models for the scattering of light. The degree of openness of the 

examples provided in the beginning is discussed, but the examples showing students how 

to answer real world problems are based on existing models and formulas. The chapter ends 

with a list of different examples and projects related to optics, construction of a gate and 

optimisation of different containers. The online materials include data for planet motions, 

temperature fluctuations at geographical spots, population data for arctic hare and wild cats 

in Canada, average income in Denmark and more. Those provide an option for students to 

autonomously explore data and construct models. 

The book summarises mathematical modelling practice as (our translation): 
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1. Problem formulation (delimit problem, what do we know and what do we 
need?) 

2. Analysis and mathematical description (e.g. identify variables, relations (if 
you encounter expressions with roots, choose other relations)) 

3. Mathematical solution to problem (apply relevant mathematical methods) 
4. Interpret the results (translate the mathematical result into natural 

language and relate to the real-world problem. (Grøn et al., 2017, p. 48) 

This is similar to Figure 3 and both textbooks seem to draw on models for modelling 

from educational research as those discussed by Niss and Blum (2020). In general, the 

textbooks offer students meta knowledge regarding the importance of modelling in society 

and in natural sciences, and that others are able to go across disciplinary boundaries, when 

modelling real world situations. The practice students are invited to take part in is delimited 

to certain steps in the mathematical domain formulated as smaller tasks. The two last books 

provide knowledge about what has motivated certain models, where mathematics is 

applied to natural and social sciences. Approaches and discussion of epistemic value, nor 

choices of items in model construction are addressed in the examples. Similarly in the 

exercises, students are not invited to discuss epistemic value, modelling strategy, nor items 

employed when building models. Potentially, this might happen in the proposed projects in 

the last book. We have no insights into how these projects are used by teachers. This 

analysis is summarised in Table 3.  

Table 3. Illustration of our analysis of the cases with respect to mathematical modelling in 
Danish upper secondary school 

  Ministerial guidelines - 

intentions 

Exam exercises Textbooks 

Meta 

aspects 

Motivation The importance of 

mathematization of the real 

world into mathematics is 

emphasised.  

‘connect content area across 

domains . . . that students 

should learn to engage with 

new atypical modelling 

problems’, ‘treatment of 

more complex problems’ 

(Danish Ministry of 

Education, 2020, p. 1) 

To assess if 

students are able 

to apply the 

notion of function 

in relation to 

some real world 

context, having no 

impact on the 

actions students 

need to take. Thus 

arithmetic, 

algebra, basic 

calculus is 

assessed. 

Examples are 

provided explaining 

a little about the 

purpose and 

motivation for 

constructing certain 

models and apply 

mathematics in 

natural and social 

science. One book 

omits this 

Strategy ‘gain knowledge about the 

phases of a modelling cycle’ 

(Danish Ministry of 

Education, 2020, p. 14) 

None This is not 

developed for the 

cases, but two 

books present 

versions of a 

modelling cycle 
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Discussion 

of epistemic 

value 

None Not present in the 

analysed items 

Not addressed 

Items used 

in model-

ling 

construc-

tion 

Analogies None None None 

Mathemati-

cal concepts 

/ theories 

‘principle properties for 

mathematical models with 

applications of the above 

mentioned [linear, 

polynomial, exponential and 

power] functions and 

combinations hereof’ (Danish 

Ministry of Education, 2017, 

p. 2) 

Calculus, notion of 

function, different 

type of functions 

(linear, 

exponential, 

power & 

polynomial) 

Mainly notion of 

functions, different 

types of function, 

differential calculus, 

algebra and 

geometry. 

Theoretical 

notions 

from other 

areas 

knowledge from other 

disciplines 

None Few elements from 

target disciplines 

are included, e.g. 

scattering of light 

from physics. 

Empirical 

data 

Describing data and 

knowledge from other 

disciplines 

Exists in exercises 

asking students 

for performing 

regression 

Present data and 

measures for the 

situations to explain 

existing models 

Model 

function 

Explorative 

function 1., 

2., 3. 

3. Possible explanations 

(though not explicitly).   

Other core functions of 

scientific models: predictions, 

explanation and 

representation. Reflect upon 

the idealistic nature of 

models and their domains 

No exploration 3. Possible 

explanations 

(though not 

explicitly). Other 

core functions of 

scientific models: 

explanation of 

formulas from other 

disciplines in order 

to predict and 

explain observations 

When we argue that the model function is mainly ‘possible explanation’, it reflects that the 

models presented provide some explanation of a phenomenon, e.g. the cooling of coffee, 

though there is no exploration since the model is already there. 

Discussion and concluding remarks 

To follow up on the relation, if any, between mathematical modelling in scholarly contexts 

and the Danish upper secondary school context, which is highly influenced by the didactical 

construct of the modelling cycle, we compare Table 2 and Table 3. The comparison indicates 

similarities and differences between scholarly knowledge and school knowledge to be 

taught. The curriculum emphasises the importance of being able to work across disciplinary 

boundaries and to apply mathematics when addressing atypical problems. Students should 
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recognise the role played by modelling in various contexts. These aims could nurture 

activities inviting the students to develop practices similar to those presented in our historic 

cases such as drawing on analogies, drawing on knowledge from the target discipline, 

developing (learning) new mathematics, and discuss the epistemic value of the model from 

the different disciplinary viewpoints. Further, the curriculum proposes that the approach 

to modelling should provide the students with knowledge about some modelling cycle. This 

is explicitly facilitated in two of the textbooks presenting examples of four-phased cycles as 

shown in Figure 3. Such descriptions of modelling and modelling competency are related to 

scholarly knowledge of didactics of mathematics, as, e.g., presented by Niss and Blum 

(2020), where the cycles are meant as analytical models, which can be used to identify and 

reflect upon students’ development of modelling competency, as stated by Blomhøj (2011). 

Thus, within the noosphere, the notion of mathematical modelling has become a mixture of 

reasons and practices from scientific contexts as those depicted in our historic cases and 

modelling cycles from didactical research, where the cycles are transposed from being 

reflection tools for teaching and learning to be content knowledge to be taught and learned. 

In the textbook examples and exercises, emphasis is put on mathematics, because the 

situations already are mathematised such as the folding paper exercise, the barge moving 

around canals, the cylinder containing some fluid, etc. We can argue that the exercises 

scaffold students’ engagement with the phases of the modelling cycle, leaving little potential 

for explorations to the students and no need for understanding the situation from other 

disciplines. Thus, the activities offered do not capture crucial traits of the practices found in 

our historic cases, but rather support students’ realisation of phases in the modelling cycle 

leaving them with limited autonomy towards the practice, but meta knowledge regarding 

how to think about modelling. As argued previously, the exam exercises align with findings 

from Frejd (2013), where few phases of the modelling cycle are assessed. On the contrary, 

their main purpose seems to be assessing other pieces of content knowledge. It requires a 

major reform of assessment systems to change this situation, as argued by Swan and 

Burkhardt (2012).  

Our analysis shows that the knowledge to be taught reflects to a minor degree the nature 

of modelling and practices we found in the historic cases, and that the external didactic 

transposition is affected by one didactical approach to mathematical modelling resulting in 

a specific picture of modelling, being slightly different from modelling in the scientific 

context. These findings align with those presented by Wijayanti and Bosch (2018) on 

proportionality, that knowledge to be taught is shaped by different elements from scholarly 

knowledge creating hybrids of body of knowledge, not supporting the learning of practices 

we strive for. In contrast to Frejd and Bergsten (2016), we might argue that the historic 

cases can serve as inspiration for upper secondary teaching, as ways to gain further 

knowledge about, e.g., the exploratory nature of modelling, the role of analogies, and the 
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disputes model constructions might lead to. Other approaches to design of modelling 

activities might nurture this as well (Barquero & Jessen, 2020). In a broader perspective, 

our findings reflect the clashes of disciplinary ideals and domain specific practices, as, e.g., 

those still to be found in recent research on systems biology. Green and Andersen (2019) 

demonstrate the need for and importance of preparing and teaching students 

interdisciplinary collaboration in this field. This could be done through modelling in context 

across school disciplines, not just under the constraint of the mathematics curriculum. This 

link to the claims formulated by Lundberg and Kilhamn (2018), that we need to explicitly 

address the didactic transposition of key notions of curriculum when designing curriculum 

and other resources, if certain traits are to be kept. This holds true for modelling as well. 
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Notes 

1  The list of entries in Table 1 is not exhaustive; Boumans’ list also contains e.g. policy views. 
2 For further analyses of Rashevsky’s work and/or its use in teaching see Abraham (2014), Keller 
(2002), Kjeldsen (2017, 2019), Shmailov (2016). 
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