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Abstract. On math trails, students can make direct connections between real objects and mathemat-

ical ideas. In these extracurricular learning arrangements, which are in the form of a rally, students 

visit places and objects in the city or around the school to solve mathematical tasks. The tasks com-

prise measuring or estimating relevant sizes and quantities and placing them in a respective 

mathematical model. One indicator of the usefulness of math trails as a form of learning is the extent 

to which they entail modelling processes. In the present qualitative study, two 11th-grade school 

classes at Oslo, divided into five groups of three students each (Ngroups=10), were individually 

recorded on video while working with math trails. Each group’s work was then analysed to 

determine observable modelling processes. The results for the groups in completing a math trail that 

involved circle calculation showed individual progressions between modelling phases while they 

worked on the tasks. The real objects were used in particular in various forms of data collection and 

validation. The article presents the study and reports on empirical findings on two groups of 

students’ modelling processes on math trails. 

Keywords: math trails; modelling; extracurricular learning; mathematising; Math & The City. 

Resumo. Nos trilhos matemáticos, os alunos podem estabelecer conexões diretas entre objetos reais 

e ideias matemáticas. Nestes ambientes de aprendizagem fora da escola, sob a forma de percursos 

programados, são visitados locais e objetos existentes na cidade ou em redor da escola onde surgem 

tarefas matemáticas para resolver. As tarefas podem implicar medir ou estimar tamanhos e 

quantidades relevantes e integrá-los num modelo matemático apropriado. Um indicador da vanta-

gem dos trilhos matemáticos como forma de aprendizagem é a possibilidade que oferecem de 

desenvolver processos de modelação matemática. Num estudo qualitativo, duas turmas de 11.º ano 

de Oslo, divididas em cinco grupos de três alunos cada (Ngrupos=10), foram gravadas individualmente 

em vídeo no decorrer da sua atividade em trilhos matemáticos. O trabalho de cada grupo foi depois 

analisado em termos dos processos de modelação observáveis. Os resultados de dois grupos num 

trilho sobre medidas de círculos mostram progressos individuais entre sucessivas fases de 
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modelação enquanto realizavam as tarefas. Os objetos reais foram utilizados, em particular, para 

várias formas de recolha e validação de dados. O artigo apresenta o estudo e relata os resultados 

empíricos relativos aos processos de modelação matemática de dois grupos no decurso de trilhos 

matemáticos. 

Palavras-chave: trilhos matemáticos; modelação; aprendizagem extracurricular; matematização; 

Math & The City. 

Introduction 

Math trails provide extracurricular learning opportunities in mathematics, and they enable 

students to gain diverse experiences in applying mathematical knowledge in everyday 

contexts. In these learning arrangements, interesting mathematical places or objects in 

urban areas or in school surroundings are visited in the form of a rally, where mathematics 

tasks are worked on (Blane & Clark, 1984; Buchholtz, 2020a; 2020b; 2021; Cahyono & 

Ludwig, 2019; Gurjanow et al., 2020; Shoaf, Pollak, & Schneider, 2004). Depending on the 

task at hand, math trails can convey basic experiences of mathematical modelling. To 

promote mathematisation and validation skills that are central to mathematical modelling, 

the tasks must be appropriately application-oriented and not only providing routine 

problems (Buchholtz, 2017). For example, meaningful data collection can be integrated if 

the relevant quantities required for the mathematical solution are determined based on real 

objects through estimation or measurement activities and subsequently applied to a 

mathematical model (Greefrath, 2010).   

Mathematics trails, which have existed since the 1980s, recently have been rediscovered 

as an extracurricular learning opportunity in mathematics. In the past, they were mostly 

created and used informally in leisure-time educational offers. Recently, however, they have 

been used to supplement mathematics lessons in the classroom. The emergence and use of 

mobile devices such as smartphones and tablets have enabled digital support for math 

trails, which also provide added value for presenting and working on the tasks (Buchholtz, 

2021; Cahyono & Ludwig, 2019; Gurjanow et al., 2020). Examples are when multiple repre-

sentations of the task content are provided or additional information about the real object 

is given in photos.  

From an empirical perspective, although task analyses may provide insights into the 

specific modelling requirements of tasks, little is known about what being outside and 

working with real objects can contribute to the learning of modelling. There is still a lack of 

evidence on the kinds of modelling activities mathematics trails can provide when students 

work on the tasks. Hence, empirical research on the learning outcomes of mathematics trails 

is still in its infancy (Cahyono, 2018; Ludwig & Jablonski, 2019; Zender, 2019). In the present 

qualitative explorative study Math & The City, two 11th grade classes at a school in 
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Oslo/Norway were divided into five groups of three students each (Ngroups=10). All groups 

were videorecorded while performing digitally supported math trails (Buchholtz, 2020b). 

Their processes in completing the tasks and their interactions with real objects and with 

each other were analysed from the theoretical perspective of mathematical modelling.  

The aim of this study was to analyse students’ task-specific modelling processes and 

strategies in working with a math trail involving circle calculation. Their interactions with 

objects connected to different tasks on the trail were observed, as well as their mathemati-

sation, interpretation, and validation strategies in estimating and taking measurements. 

Exploratory qualitative research methods were used to analyse the students’ modelling pro-

cesses and collect evidence for the potential of math trails to promote modelling activities.  

Theoretical Background 

Mathematising activities in contextual situations as a key to modelling 

Mathematisation processes play a special role in task design for math trails. The term “math-

ematising” originally goes back to Freudenthal (1968, 1973) and his engagement (together 

with Treffers) in the Dutch curriculum reform project Wiskobas in the late 1960s and early 

1970s, which is often referred to as the origin of the Realistic Mathematics Education (RME) 

approach in the Netherlands. According to Freudenthal (1968), mathematics should not be 

learned as a closed system but as an activity of mathematising “reality” and, if possible, even 

by mathematising mathematics. Here, “mathematising” refers to mathematical structuring 

in the sense of a transition from the lifeworld to the world of symbols. In later publications, 

Freudenthal accepted Treffers’ (1987) distinction between horizontal and vertical mathe-

matising, in which the former means making a lifeworld problem field accessible to mathe-

matical treatment and continuously schematising it, and the latter means mathematical 

processing as an increasing process of abstraction. In its original meaning, the term refers 

to basic mathematical activities, such as counting, structuring and comparing quantities or 

illustrating basic arithmetical operations, such as adding, multiplying and dividing, thereby 

referring to almost all mathematical activities (cf. examples given by Freudenthal, 1991, p. 

42-44). In situated work conducted with physical representatives of typically idealised 

mathematical objects, measuring and determining quantities, as well as the structural 

comprehension of mathematical relationships between physical objects (e.g., order or 

geometrical pattern or size comparisons), is therefore understood as mathematising. 

Freudenthal’s understanding of mathematising is broader than that in today’s discussion on 

modelling. The horizontal meaning of the term is now used specifically to refer to processes 

of description and translation from reality into mathematics (i.e., analogously, “interpret-

ing” as back-translation) (Blum & Leiß, 2007; Niss, 2010). This usage does not necessarily 
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include data collection, which is sometimes considered more an activity of structuring. How-

ever, both mathematising and interpreting are broadly understood as central components 

of mathematical modelling (cf. e.g. Greefrath & Vorhölter, 2016; Kaiser, 2007; Niss, Blum & 

Galbraith, 2007), and they are regarded as important in students’ learning of mathematics. 

In the literature, modelling is usually ideally described as going through a circular process 

in which essential activities or subcompetencies play a role. This process consists of 

simplifying problems, making appropriate assumptions, translating a real problem into 

mathematics (mathematising), working mathematically, relating a mathematical result to 

the real situation, and interpreting and validating solutions (Blum & Leiß, 2007). Processes 

such as structuring and simplifying problems using real objects, calculating with real 

quantities, and object-related validations of mathematical results are therefore central 

activities in extracurricular learning with math trails.  

Contextualisation of tasks in math trails 

In the math trail design used in the present study, the tasks followed experience-based 

criteria, such as relating to content previously treated in class, having a realistic problem 

orientation, encouraging students to mathematise using determined sizes and quantities, 

and including diverse mathematical concepts and ideas (Buchholtz, 2017). The process of 

mathematising within the tasks, however, occurs in comparatively small, guided steps, and 

the developed mathematical models were not complex, as the students working on the trail 

were inexperienced modellers. However, these constraints beg the question of whether the 

tasks should be regarded as “classic” modelling tasks or as effective mathematical outdoor 

activities. Figure 1 shows an example of a task that was part of a math trail in the Math & 

The City study, which provided the foundation for the analysis of students’ modelling 

activities described in this article. 

 

Figure 1. Fountain task (Buchholtz & Singstad, 2021) 

In the fountain task, the volume of water must be calculated. The task is embedded in a 

real-world context, in which the pool must be filled with water every spring because the 

winters in Oslo are characterised by extremely low temperatures. The city council therefore 

 

The well-known Peacock Fountain in Oslo.  
When the fountain is turned on and the pool is 
filled in the spring, the city council must find out 
how much water the pool holds. 

a) For this purpose, the perimeter of the pool 
must be determined. 

b) Next, find the area of the pool. 
c) How much water can the pool hold? 

Provide your answer in m3. 
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needs to know how much water is needed to fill the pool. In this task, the students must 

consider how to determine the volume of water in the cylindrical fountain. One important 

difficulty is that the diameter of the basin (7.6 m) is not accessible and therefore cannot be 

measured. Therefore, a suitable mathematisation must be determined based on the quanti-

ties that can be measured (perimeter = 24 m). For example, the students could choose the 

number of footsteps as a non-standard unit of length by walking around the pool, counting 

the number of steps taken, and then multiplying it by the length of one step. The students 

must note that the stones are measured at the inner edge of the basin. Otherwise, the results 

will vary considerably. Based on the corresponding water level of the pool (0.36 m), the 

water volume (16.5 m3) could then be approximated.  

Previous studies in the literature have paid little attention to real-world representational 

contexts in the classification of modelling-related tasks. Ludwig and Jablonski (2019) 

mentioned that students on math trails “have to think about which data they have to 

measure. This is really the difference to modelling tasks in the Classroom [sic!]” (p. 907). 

However, embedding a task in a real-world context is possible to varying degrees. For 

example, Hagena (2019) compared various tasks. In one task, the photo of a real brick tower 

was shown, and the task involved determining the number of bricks needed to build the 

tower in the image. However, there are differences when the brick tower would be actually 

visited on a mathematics trail and the students would determine on site the number of 

bricks used by both calculating it and by making various assumptions. In contrast to the 

photo, the visual-haptic presence of the object and its actual size would allow for a broader 

range of approaches to obtaining exact results and an easier interpretation of the 

mathematical solution, especially in relation to the students’ data collection. In validating 

solutions, the direct comparison between calculations and real objects enables an empirical 

verifiability that is not possible in the classroom. Therefore, tasks on math trails should 

always include the students’ collection of real data on objects, which ensures that the 

required mathematising is contextualised.  

To demonstrate the importance of realistic contexts when modelling in math trails, 

Buchholtz (2020a) developed an idealised model of real-world context-based modelling 

processes that can be observed on math trails (Figure 2). This model was used to identify 

the central activities of students in working on the math trail in the present study. 

The representation resembles a modelling cycle (Blum & Leiß, 2007; Greefrath & 

Vorhölter, 2016; Kaiser & Stender, 2013) or the nodes model of modelling activities 

described by Doerr and Pratt (2008, p. 264), which includes the phases of mathematisation, 

mathematical work, interpretation and validation. On math trails, the transition between 

reality and mathematics, or back transition in the context of the objects, plays an important 

role. Therefore, the model includes spheres of contextualisation, which are the steps in 

which the individual modelling processes are closely linked to real objects. For example, in 
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math trails, data collection and the localisation of the quantities to be collected from the real 

object play key roles.  

 

Figure 2. Modelling processes on math trails (Buchholtz, 2020a) 

Research question 

Based on the theoretical background, this paper addresses the following research question: 

What kinds of contextualised processes (e.g., mathematisation, interpretation, and 

validation) do 11th grade students show on a math trail when they encounter and interact 

with objects in the task? 

Method 

Data collection 

In conducting the math trails with students, each group of students was equipped with a 

tape measure, something to write on, and a mobile device (iPad) that displayed the tasks 

and guided the students on the trail based on geo-location coordinates. The students sub-

mitted all solutions to the task via an app1. Both groups of students were also equipped with 

an action camera belt that recorded their progress on their math trails. The angle of the 

camera was directed to the floor so that it recorded the working processes of the students 

on the iPads and—most importantly—with the real objects in the task. The video recordings 

also ensured that the personal rights of third persons were not harmed when the students 

moved through the city (Figure 3).  
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Figure 3. Data collection method 

The students were responsible for recording their processes at individual stations along 

the math trail, which ensured that the data collection was minimally invasive. In November 

and December 2019, the study was conducted with two 11th grade classes2 from Oslo and 

their mathematics teachers. In each of the two classes, five groups of three students were 

equipped with cameras and iPads. One trail, which was focused on circle calculations, was 

based on five tasks (including the fountain task), and the other trail, which was focused on 

linear functions, was based on four tasks. The data were collected from (Nvideos=45) videos 

between 8–20 minutes in length. The video data were analysed using the software InterAct, 

and the students’ solutions were saved in the app. 

Data analysis 

Methods used in qualitative explorative research were applied to evaluate the math trails. 

The qualitative method of the narrative walk-in-real-time interview (méthode des 

itinéraires) was originally developed to collect and describe subjective views of pedestrians 

in order to draw conclusions about urban planning (Miaux et al., 2010; Petiteau & Pasquier, 

2001). Central to this method are specific city walks, whereby the researcher takes a more 

or less (depending on the study) passive role in being guided by a participant. The resear-

cher interviews and records the participant, followed by a photographer who videorecords 

each change in direction or emotion. This method was adapted for application in math trails 

to gather information about modelling activities and subjective views about the learning 

contexts of the tasks (Buchholtz & Singstad, 2021). The data collected from the video 

recordings are then analysed using qualitative content analysis (Mayring, 2014). 

In the present study, a combined deductive and inductive approach was chosen for the 

analysis of the video material. In the first deductive phase, we started with a predefined set 

of categories, which were formed with the help of relevant theoretical literature on different 

modelling processes (Blum & Leiß, 2007; Freudenthal, 1991). The theoretical categories of 

understanding, structuring, mathematising, calculating, interpreting and validating were 

included in the analysis (Table 1). Activities in goal-oriented data collection, such as count-

ing, estimation and measurement, were assigned to mathematising in Freudenthal’s sense 

(Greefrath, 2010; Kuch, 2018). The data material was carefully coded by continuously time-

stamping individual sequences in the videos in which corresponding modelling activities 
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specified in the categories were visible based on various indicators. Even if erroneous 

approaches were used in the process, the underlying activity was initially considered a 

modelling process to gain as comprehensive an impression of the activities as possible. An 

advantage of using predefined categories was that the video material became more 

manageable and the complexity could be reduced. The coded processes had different 

durations, but both the frequency of the sequences and the length of the sequences were 

used to address the research question in this study. 

Table 1. Overview of deductive categories  

Theoretical categories 

(modelling activity) 
Definition Indicators (examples) 

Understanding (Forstår) Students spend time reading and 

understanding the task. 

Looking at the iPad and reading. 

Discussing the task. “What shall we 

do?”; “Have you understood what we 

are going to do?” 

Structuring 

(Strukturere) 

Simplifying. Students recognise 

the relevant physical object and 

sizes and create a mental (real) 

model. 

Locating the place of the object. 

Using the object in the planning. 

Delegation of work. 

Mathematising 

(Matematisere) 

Students’ attempts to express the 

problem mathematically – 

transferring the real model into 

mathematics. 

Collecting the information needed. 
Estimating, measuring, counting and 

putting the relevant quantities into a 

mathematically meaningful relationship.  

Calculation (Begregne) Students calculate the problem, 

which is now mathematically, it is 

solved and calculated by using 

mathematical knowledge. 

Using measurements to calculate a 

solution.  

Using the calculator on mobile phones. 

Interpretation 

(Interpretere) 

Students interpret the 

mathematical solution and 

translate it to the real world. 

Interpreting and explaining what the 

different numbers they arrived at mean. 

Validation (Validere) Students find out if their solution 

agrees with reality and whether 

the answer gives meaning. 

“No, it cannot be right!” and looking at 

the object again. Getting results in the 

app. Looking at the answer in the app 

and comparing it. Troubleshooting. 

 

In phase two of the analysis, the videos were coded inductively. In this phase, additional 

categories were formed based on specific events that emerged from the data. The aim was 

to obtain further unexpected findings that could be relevant in addressing the research 

question. First, noteworthy activities of the students in working on the math trails that could 

not be described by the deductively obtained categories were identified. If the same or 

similar activities were then observed in several videos, these activities were included in the 

coding scheme as an additional category of analysis. All videos were examined to determine 

whether they included data in these categories, and their occurrences were given frequency 

codes (i.e., singular time stamps). These categories included the use of digital media and 
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specific group interactions. As in the first phase, the inductive categories that were identi-

fied in the videos were added to the InterAct software. The inductive codes assigned were 

Googling, Individual Work, Imitating, Misunderstanding and Other (Table 2). 

The categories and the frequency of both types of assigned codes were interpreted in the 

analysis of the group activities. This sequence-oriented approach has previously been 

applied in the context of video-based research on modelling and problem solving in pre-

vious studies (e.g. Modelling Activity Diagrams: Ärlebäck & Albarracín, 2019). As a tool of 

analysis, it has advantages over the circuit model or arrow diagrams. The resulting diagrams 

yielded better impressions of individual modelling processes (Borromeo Ferri, 2007), in 

which, for example, phases can overlap or repeat.  

Table 2. Overview of inductive categories  

Emerging categories 

(inductive) 
Definition Indicators (examples) 

Googling (Google) Students decide how to 

perform various tasks. 

The camera captures the students’ 

Googling. Students say they should Google 

to find something out or find a formula. 

Individual work 

(Individuelt arbeid) 

A student takes on the work, 

while the other students do 

not work despite the fact that 

it is the task fosters 

cooperative work. 

A student takes the iPad and sits down to 

solve the task. A student stays in the 

background, solves the task on their own, 

and comes back to the other students with 

the answer. 

Imitation (Hermer) See what the other student 

groups do, and do the same. 

The student group is seeing onto another 

group of students and talking about doing 

the same. 

A student captures what another group 

does and tells the others that they have an 

idea of how the task can be solved. 

Misconception 

(Misoppfatning) 

Students say something that is 

erroneous, or it is obvious that 

they have a misconception 

related to the situation. 

“Okay, so the formula for the area of a 

circle is pi squared times the radius. Then 

we have to take 3.14 times 2, which is 6.28 

times the radius. “ 

“Yes, 1 metre, … it's 60 cm." 

“Diameter is the same as perimeter.” 

Other (Annet) Miscellaneous occurrences Students begin to do other things as a 

result of lost motivation or 

misunderstanding of the task. 

Talking about other things. Playing 

football. Checking social media. Putting on 

music. Complaining that it’s boring. 

Results 

For the purposes of this paper, the modelling processes of two groups in performing the 

fountain task (Figure 1) will be described in detail. Figures 4 and 5 show diagrams with the 

overlapping codes created for each group of students for their task processes in InterAct. In 
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the upper parts of the diagrams, different colours indicate the modelling processes during 

the temporal course; the lower parts show time marks for the assigned inductive codes. The 

groups differed in their achievements: group 2 encountered many difficulties during the 

task-solving process, and group 3 accomplished the task smoothly. In addition to the 

diagram, parts of the video sequences are summarised and interpreted in subsequent tables 

(Tables 3 and 4) that show how the data were coded. Furthermore, the interaction of the 

students allowed for an interpretation of the solution process and detailed descriptions of 

the modelling activities that took place. Tables 3 and 4 contain descriptions of the data, 

quotations of the students’ dialogue, and interpretations of the coding.  

Modelling processes in group 2 

Group 2 consisted of three girls (S4, S5, and S6) who expressed that they needed much 

support in mathematics and that they neither did particularly well nor were interested in 

mathematics. S4 had repeated the 11th grade after she dropped out of the subject in the 

previous year. The students in group 2 showed positive attitudes, but they were less moti-

vated and spoke less compared with the other groups. The average correct response rate of 

group 2 was 64%. Group 2 completed the task in approximately 15 minutes, which was the 

longest of all the groups. The group had as many as 20 misconceptions in their work on this 

task, and they Googled 14 times. Moreover, group 2 may have been successful in the 

subtasks at the end because they imitated another group at the beginning of the work. At 

the end of the task processes, the group was highly engaged in mathematical calculations 

(Figure 4). However, their misconceptions about using different measurement units led to 

increasing confusion in the group.  

 

Figure 4. Modelling process of group 2 on the fountain task (note: the codes are provided in 
Tables 1 and 2) 

The coded sequences (Table 3) show that group 2 used different approaches to mathe-

matisation, and it was creative in determining relevant variables. For example, the first 

approach of direct measurement was immediately discarded when the approach of a differ-

ent group was observed. Group 2 decided to fall back on the use of embodied measurement 

units, such as steps of one metre to determine the perimeter in task A. The imitation of the 

other group showed these students how to proceed, but the group members also developed 



150 N. Buchholtz 

 

Quadrante 30(1) 140-157 

 

respective approaches by themselves. However, they did not remember the correct formula 

for the perimeter, so a mistake made by S5 confused the group. This group lacked the 

mathematical knowledge required to correctly convert the formula for the perimeter to 

determine the length of the radius of the fountain in task B. When they did not find a correct 

solution even by Googling, the group decided to obtain further data on the radius using the 

tape measure, but the result was imprecise because they measured the radius in the water. 

Based on countable entities in the real objects (stones), the group therefore finally decided 

to estimate the radius. In task C, they made another mistake by mixing up the measurement 

units. It was observed that group 2 had a quick grasp of the meaningfulness of data collec-

tion. However, the group’s inability to put the collected variables into a mathematical model 

hindered their successful mathematisation.  

Table 3. Description of Modelling Activities of group 2 

Modelling process Codes and interpretation 

Reading the task. Thinking about it and looking at each 

other. S5: “Wasn’t that what we did in the last task? What 

do we use? Was it diameter times pi?”. 

Understanding: connecting the task 

immediately to the previous task. Trying 

to remember the formula. 

Finds out that it gets difficult to measure with a measuring 

tape all the way over the fountain to find the diameter. 

Group tries it. 

Mathematising: making an attempt to 

measure despite the fact that they realise 

that this doesn’t work. 

The measuring tape is too short, and they have to use 

another method. They see that the students in another 

group walk around the fountain and count the number of 

steps. They want to do the same. 

Imitation: see what the other group is 

doing and choose to do the same 

though they do not know if it is the right 

way. 

S4 tells the others that they must measure up one metre on 

the measuring tape and then try to go with steps that are 

exactly one metre. Walking around the fountain. Gets 24 

steps. 

Mathematising: make a new attempt to 

measure the perimeter with individual 

units of measurement. 

Checking the task on the iPad. S5: “Shouldn’t we multiply 

this by 3.14 now?” Became quickly aware that it was the 

perimeter the task A asked for. Enter 24 m and get the right 

result. 

Misconception and Interpretation: Follow 

up on the idea of S5. But relate their 

results to the fountain. Try to remember 

the formula for perimeter, but in the end 

stick to the data they collected. 

Do not know how task B can be solved. Google the formula 

and find that they need the radius. 

Googling and Mathematising: Searching 

for anything to get the work on at all. 

Identifying the right formula. 

S5: “Okay, so the perimeter is 24, then the diameter must be 

12, and radius is 6”. Use the calculator to find pi times r 

squared. 

Misconception and calculation: They 

have not understood the relationship 

between perimeter and diameter. 

Result seems too big. S4: “Is the radius 6 metre?”. Looking 

at the fountain. “It can’t be right.” 

Interpretation and validation. They see 

that the radius of the fountain must be 

less than 6 m. They get stuck. 

Do not understand the formula. Trying to measure the 

radius with tape again. It’s too far over the fountain, and the 

measuring tape gets wet. S6 says that the stones at the 

bottom of the fountain look like having a metre length. 

Mathematising: first approach of 

measuring directly fails, but attempt 

number two with smart counting works 

better.  
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Asks how many such stones there are from the edge of the 

fountain basin to the centre. Comes to the conclusion that 

the radius is 3.5 metres. 

Individual units of measurement are used 

here. 

They want to calculate pi times 3 squared. Guess the answer 

is 9.42. Say they have no idea how to calculate pi times r 

squared. Guess the answer, but the app shows it’s wrong 

(correct answer is shown). 

Calculation and Misconception: It looks 

like they calculate pi times 3, but do not 

know how they should square 3. 

Task c) How much water does the pool hold then? Get help 

from teacher to understand that the difference between 

area and volume is the height. Measure therefore the 

height with measuring tape. Read the number of 

centimetres. Use calculator to find the area (which they got 

in m2). They multiply times the height (which they have 

found in cm). Do not understand the result. 

Interpretation: Need help to interpret 

what they are doing. Then try to figure 

out themselves but encounter one barrier 

when mixing units of measure. 

Misconception: Lack of validation. 

Modelling processes in group 3 

Group 3 consisted of three boys (S7, S8, and S9), all of whom were considered by the teacher 

to be strong in mathematics. Nevertheless, the group only managed to achieve an overall 

average solution frequency of 73%. Group 3 solved the fountain task in 11 minutes. Compa-

red with the other groups, the group needed little time to understand the task and to struc-

ture the work. Furthermore, they validated their results frequently. Figure 5 shows that the 

modelling process in group 3 ran almost idealtypically. That is, the processes of understand-

ing, structuring, mathematising, calculation, interpretation, and validation were observed 

in a following order.  

  

Figure 5. Modelling process of group 3 on the fountain task (note: the codes are shown in 
Tables 1 and 2) 

The analysis of the coded sequences (Table 4) revealed that the group 3 worked in a 

relatively goal-oriented and planned manner. They worked with individual units of length 

that they measured on the real object. The students in group 3 helped each other and 

explained the differences between the relevant mathematical concepts (i.e., perimeter and 

area), but in the course of the task process, it was observed that S7 led in the individual 

work and the other two students did not understand the approach as quickly. However, at 

the end of the task, the students again worked as a group because further data had to be 

collected (i.e., height of the water level). Rearranging the perimeter formula to determine 

the radius and then the area caused problems in the group, but they were able to overcome 
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the difficulties themselves with minimal help from the teacher. They also developed object-

based validation strategies that helped the group identify errors in units.  

Table 4. Description of Modelling Activities of group 3 

Modelling process Codes and interpretation 

Group reads the task a) text. The students remind each 

other that perimeter is “that which is around, not inside.” 

Understanding the task 

Thinking of a way to solve this. S7: “We cannot use the 

measuring tape because it is too short. How long is the 

measuring tape?” 

Structuring: Creates a plan but checks 

before execution whether it is wise to 

implement the plan. 

S7 Looks at the rocks at the bottom of the fountain and 

discusses if they are alike big. Then looking at one of the 

rocks outside the fountain, which go around the whole 

fountain. They measure one stone and count how many 

stones there are around. Each stone is 125 cm. 

Mathematising: Object-related planning 

and data collection; group follows the 

idea of smart counting and measuring 

with individual units of measurement 

provided by the object.  

S8 calculates how much 125 cm times 20 stones are. 

Almost right, the app shows only a 1 m deviation. 

Calculation and interpretation 

Checking out task b) and relating it to the fountain. S9: 

“What is the area again, it is the around, right?” S7: “No, it’s 

inside!” 

Understanding and task validation: Group 

collaboration helps to quickly validate the 

correct understanding of the task. 

To find the area of the fountain, S7 uses the perimeter and 

divides with pi to find the diameter. S8 and S9 do not 

remember these formulas. 

Calculation: This goes a little too fast for 

S8 and S9. They seem to lose motivation. 

S7 remembers the formula and finds the radius by dividing 

the diameter by two. Then he says that one should only 

multiply the radius by pi to get the area. 

Calculation and individual work with 

misconception 

They Google the formula. Googling and Validating of the approach 

Get the number 12 by multiplying the radius by pi. S9: “But 

it’s probably more than 12 square metres here ?!” They 

answer “12”, but it’s wrong in the app. 

Interpretation and object-related 

validation: They check their result by 

comparing it with the fountain and 

individual ideas about the actual size. But 

do not do something with what they 

think is wrong. 

Teacher helps: “It is not r times pi. It is pi times r squared”. 

The group calculates on the calculator now and gets 45. 

That gives the correct answer. 

Validation: Get help to correct errors. 

Task c) How much water can the fountain hold? S8 

remembers the formula “Base times height”. The students 

quickly agree that the base is the area that they just found. 

The height is about 38 cm. S8 measures the water height. 

Mathematising: Recalling the formula for 

the volume and agreeing on how to bring 

the quantities together, data collection 

 

Enter 45 times 38 on the calculator, which gives the answer 

1710, but they are aware of the units of measurement, so 

they write 17,1 cubic metres as reply and get it correct. 

Calculation and interpretation: they 

remember to convert from cm to m 
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Discussion 

The video recordings showed the individual groups of students solving the required tasks 

during the math trail. Different modelling processes were observed. The results showed 

that, similar to other modelling activities, math trails with corresponding tasks can, based 

on these findings, also be described in terms of the modelling processes involved. As the 

analysis of the videos revealed, structuring, mathematisation, interpretation, and validation 

activities played a particularly important role in the students’ solution processes. 

Transitions between reality and mathematics had to be realised, which involved individual 

content-related ideas and prior mathematical knowledge, such as the relations and differen-

ces between perimeter, area, and diameter and the corresponding formulas used to deter-

mine them. However, when the students lacked mathematical knowledge, misconceptions 

hindered them from achieving adequate mathematisations and correct solutions. An inte-

resting finding was that when students were stuck in solving a task, they imitated the solu-

tion approaches used by other groups, or they quickly tried to Google a solution. This finding 

on the one hand indicated the helplessness of the students, but on the other hand it was also 

observed that independent thought and creativity was developed through the help of 

others. 

In contrast to regular modelling tasks in class, the contextualisation when mathematising 

and validating via the real objects seems to play a special role for math trail tasks. To solve 

the tasks, the students had to measure, scale, count, or estimate quantities and then place 

them in a correct mathematical relation or reconstruct or calculate relevant but inaccessible 

quantities from measured quantities – that is, actual mathematising.  

When understanding the tasks, the students localised the relevant quantities in the real 

objects, which was evident in the videos through corresponding gestures and the viewing 

directions of the students. Here, the extended contextualisation through the real objects 

becomes relevant for the first time, as shown in Figure 1 by the transition to grey spheres. 

To plan a solution approach and determine specific required sizes, the determined quanti-

ties had to be related to the corresponding real object (S9’s question “What is the area again, 

it is the around, right?” in group 3, see Table 4). Context-related assumptions or simplifica-

tions were made. For example, the basin of the fountain was cylindrical, and the technical 

fittings of the water fountain in the basin did not have to be considered. Such localisation 

and object-related planning is comparable to the creation of a real model of a situation in 

classical modelling tasks in the classroom. However, the approach of mathematising first 

requires a structuring of the lifeworld context, in which mathematical ways of thinking and 

working, as well as known heuristics, play a role, without already working purely mathema-

tically here (Freudenthal, 1991). However, the results showed that this structuring was 

observed in only a few situations, such as when the groups either tried an initial approach 

directly (group 2) or created a plan (group 3). This was followed by targeted data collection 
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through measurement activities or estimation. Based on the accessibility and size of the real 

object and the available tools, suitable ways of data acquisition have to be found for this 

purpose, partly using the conditions of the real object. However, as previously mentioned, 

in many theoretical modelling cycles, data collection is not identified as an explicit step 

(Blum & Leiß, 2007; Greefrath & Vorhölter, 2016; Kaiser & Stender, 2013), so its theoretical 

relation to the understanding of mathematising is not yet clear. It appears to have been 

marginalised for two reasons: first, when working with classical modelling tasks in the 

classroom, it is unresolved whether data collection belongs theoretically in the realm of 

simplifying, mathematising or mathematical work. Second, it seems to be negligible insofar 

as it consists only of the pure information acquisition (given quantities) from the task 

formulation or an additional illustration (e.g., a photo of a hot air balloon). However, regar-

ding math trails, it seems reasonable to theoretically identify data collection as an explicit 

step in contextualised mathematisation because it constitutes the core of the contextuali-

sation extended by real objects. When the relevant quantities have been determined, they 

must be put into a suitable mathematical context. For this purpose, content-related ideas 

are activated, for example formulas for calculating quantities are used, such as those 

observed in group 3 in the present study. Hence, the transition to the mathematical model 

via mathematisation takes place.  

During the math trails, it was observed in the video recordings that the students mentally 

detached themselves from the real-life context, such as by performing calculations on paper 

or a smartphone. This step in mathematical work, which is understood as symbolic opera-

tion, therefore seemed to be a purely cognitive activity outside the sphere of contextualisa-

tion. The mathematical results were subsequently interpreted with respect to the task and, 

if necessary, by re-localisation, thus switching back to the lifeworld contextualisation of the 

real object. The groups directly checked their mathematical results against the real objects. 

The findings revealed indications of several direct validation processes (Czocher, 2018), 

such as S9’s (group 3) comparison with known benchmarks: “But it’s probably more than 

12 square metres here?!”. In looking at the fountain, S4 in group 2 asked: “Is the radius 6 

metres?” – “It can’t be right”. By having the real objects as physical entities available, as a 

control strategy, the results could be validated directly on the object (Borromeo Ferri, 2006; 

Czocher, 2018).  

Limitations 

The results of the study were based on the analysis of the video recordings of individual 

groups of students. Therefore, the results must be interpreted with caution, and they cannot 

be generalised. The evaluation of the data collected from the video recordings was based on 

a qualitative coding procedure, which entailed a necessary coarsening of the evaluation cat-

egories so that several videos could be economically compared with each other to address 
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the research question. Because this study did not focus on cognitive processes, a further 

replicative study could conduct a deeper analysis to determine the factors that influenced 

the individual groups in their solution processes and the effects of outside help (e.g., imita-

tion, the teacher, or Google) on their solution process. Because the prior knowledge of the 

students was not controlled, and other performances were not measured, no conclusions 

could be drawn about the effects of math trails on the students’ mathematical abilities be-

yond the observation and identification of situational modelling activities. 

Closing remarks 

If math trails provide real-life contexts for modelling activities, they could be a useful 

supplement to mathematics lessons in the classroom, giving students an opportunity to 

apply mathematics in their everyday lives. The students’ modelling processes examined in 

the present study were embedded in an extended contextualisation that was not compara-

ble to classical modelling tasks in the classroom. In the present study, contextual mathema-

tisation and validation processes involved real objects, which were the basis of the data 

collection and the interpretation or validation of mathematical solutions. However, empiri-

cal research on the effects of math trails on learning modelling and mathematics is only 

beginning. Nevertheless, the results of this study could provide initial qualitative empirical 

findings regarding modelling processes used in math trails, which should be extended by 

future systematic research. 
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Notes  

1 Details about the task presentation, the use of the mobile device and the app by the students are 
provided in Buchholtz (2020b). 
2 Students in the 11th grade in Norway are about 16 years old. 

References 

Ärlebäck, J., & Albarracín, L. (2019). An extension of the MAD framework and its possible implication 

for research. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings 

of the Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht, 

the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME. 

Retrieved from https://hal.archives-ouvertes.fr/hal-02408679  

Blane, D. C., & Clarke, D. (1984). A mathematics trail around the city of Melbourne. Monash: Monash 

Mathematics Education Centre, Monash University. 

Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling 

problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, 



156 N. Buchholtz 

 

Quadrante 30(1) 140-157 

 

& S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 

222–231). Chichester, UK: Horwood Publishing. 

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling 

process. ZDM Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883   

Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines, P. 

Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering, 

and economics (pp. 260–270). Chichester, UK: Horwood Publishing. 

Buchholtz, N. (2017). How teachers can promote Mathematising by means of Mathematical City 

Walks. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and applications - 

Crossing and researching boundaries in mathematics education (pp. 49–58). Cham, Switzerland: 

Springer. https://doi.org/10.1007/978-3-319-62968-1_4  

Buchholtz, N. (2020a). Mathematische wanderpfade unter einer didaktischen perspektive. Mathe-

matica Didactica, 43(2), 95–110. Retrieved from http://www.mathematica-didactica.com/Pub/

md_2020/2020/ges/md_2020_Buchholtz.pdf 

Buchholtz, N. (2020b). The Norwegian study math & the city on mobile learning with math trails. In 

M. Ludwig, S. Jablonski, A. Caldeira, & A. Moura (Eds.), Research on Outdoor STEM Education in 

the digiTal Age. Proceedings of the ROSETA Online Conference in June 2020 (pp. 79–86). Münster: 

WTM. https://doi.org/10.37626/GA9783959871440.0.10 

Buchholtz, N. (2021). Modelling and mobile learning with math trails. In F. K. S. Leung, G. A. Stillman, 

G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in East and West: International 

perspectives on the teaching and learning of mathematical modelling (pp. 331–340). Cham, 

Switzerland: Springer. https://doi.org/10.1007/978-3-030-66996-6_28  

Buchholtz, N. & Singstad, J. (2021). Learning modelling with mathtrails. In G. A. Nortvedt, N. F. 

Buchholtz, J. Fauskanger, et al. (Eds.), Bringing Nordic mathematics education into the future. 

Preceedings of Norma 20. The ninth Nordic Conference on Mathematics Education, Oslo, 2021 (pp. 

25–32). Gothenburg, Sweden: NCM & SMDF. Retrieved from http://matematikdidaktik.org/wp-

content/uploads/2021/04/NORMA_20_preceedings.pdf  

Cahyono, A. N. (2018). Learning mathematics in a mobile app-supported math trail environment. 

Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-93245-3  

Cahyono, A. N., & Ludwig, M. (2019). Teaching and learning mathematics around the city supported 

by the use of digital technology. Eurasia Journal of Mathematics, Science and Technology 

Education, 15(1), em1654. https://doi.org/10.29333/ejmste/99514  

Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. 

Heid, & G. W. Blume (Eds.), Research on technology in the teaching and learning of mathematics: 

Syntheses and perspectives: Mathematics learning, teaching and policy (Vol. 1, pp. 259–285). 

Charlotte: Information Age. 

Freudenthal, H. (1968). Why teach mathematics so as to be useful. Educational Studies in 

Mathematics, 1, 3–8. https://doi.org/10.1007/BF00426224  

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: Reidel 

Publishing. 

Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht, The 

Netherlands: Kluwer. 

Greefrath, G. (2009). Schwierigkeiten bei der bearbeitung von modellierungsaufgaben. In M. 

Neubrand (Ed.), Beiträge zum mathematikunterricht 2009 (pp. 137–140). Münster, Germany: 

WTM-Verlag. 

Greefrath, G. (2010). Didaktik des sachrechnens in der sekundarstufe. Heidelberg, Germany: Springer 

Spektrum. https://doi.org/10.1007/978-3-8274-2679-6  

Greefrath, G., & Vorhölter, K. (Eds.) (2016). Teaching and learning mathematical modelling: 

Approaches and developments from German speaking countries. Cham, Switzerland: Springer. 

https://doi.org/10.1007/978-3-319-45004-9_1  

Gurjanow, I., Zender, J., & Ludwig, M. (2020). MathCityMap: Popularizing mathematics around the 

globe with math trails and smartphones. In M. Ludwig, S. Jablonski, A. Caldeira, & A. Moura 

https://doi.org/10.1007/BF02655883
https://doi.org/10.1007/978-3-319-62968-1_4
http://www.mathematica-didactica.com/Pub/md_2020/2020/ges/md_2020_Buchholtz.pdf
http://www.mathematica-didactica.com/Pub/md_2020/2020/ges/md_2020_Buchholtz.pdf
https://doi.org/10.37626/GA9783959871440.0.10
https://doi.org/10.1007/978-3-030-66996-6_28
http://matematikdidaktik.org/wp-content/uploads/2021/04/NORMA_20_preceedings.pdf
http://matematikdidaktik.org/wp-content/uploads/2021/04/NORMA_20_preceedings.pdf
https://doi.org/10.1007/978-3-319-93245-3
https://doi.org/10.29333/ejmste/99514
https://doi.org/10.1007/BF00426224
https://doi.org/10.1007/978-3-8274-2679-6
https://doi.org/10.1007/978-3-319-45004-9_1


Students’ modelling processes… 157 

 

Quadrante 30(1) 140-157 

 

(Eds.), Research on Outdoor STEM Education in the digiTal Age. Proceedings of the ROSETA Online 

Conference in June 2020 (pp. 103–109). Münster, Germany: WTM. 

Hagena, M. (2019). Einfluss von größenvorstellungen auf modellierungskompetenzen. Empirische 

untersuchung im kontext der professionalisierung von lehrkräften. Heidelberg, Germany: 

Springer Spektrum. https://doi.org/10.1007/978-3-658-23115-6  

Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. 

Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and 

economics (pp. 110–119). Chichester, UK: Horwood Publishing. https://doi.org/10.1533/

9780857099419.3.110 

Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning 

environments. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical 

modelling: Connecting to research and practice (pp. 277–293). Dordrecht: Springer. https://

doi.org/10.1007/978-94-007-6540-5_23  

Kuch, A. (2018). Wie viel schafft die Fähre? Schätzend zu näherungswerten gelangen. Mathematik 

Lehren, 207, 20–24. 

Ludwig, M., & Jablonski, S. (2019) Doing math modelling outdoors: A special math class activity 

designed with MathCityMap. In J. Domenech, P. Merello, E. Poza, D. Blazquez, & R. Peña-Ortiz 

(Eds.), Fifth International Conference on Higher Education Advances (HEAd’19) Universitat 

Politecnica de Valencia (pp. 901–909). Valencia, Spain: Editorial Universitat Politècnica de 

València. http://dx.doi.org/10.4995/HEAd19.2019.9583  

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software 

solution. Klagenfurt. Retrieved from http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173 

Miaux, S., Drouin, L, Morencz, P., Paquin, S., & Jacquemin, C. (2010). Making the narrative walk-in-

real-time methodology relevant for public health intervention: Towards an integrative 

approach. Health & Place, 16(6), 1166–1173. https://doi.org/10.1016/j.healthplace.

2010.08.002 

Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh et al. (Eds.), 

Modelling students’ mathematical modelling competencies (pp. 43–59). New York, NY: Springer. 

https://doi.org/10.1007/978-1-4419-0561-1_4 

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P.L. Galbraith, H.-W. Henn, & M. 

Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–

32). New York, NY: Springer. https://doi.org/10.1007/978-0-387-29822-1_1 

Petiteau, J. Y., & Pasquier, E. (2001). La méthode des itinéraires: récits et parcours. In M. Grosjean & 

J.-P. Thibaud (Eds.), L’espace urbain en methods (pp. 63–77). Marseille, France: Parenthèses. 

Shoaf, M. M., Pollack, H., & Schneider, J. (2004). Math trails. Lexington, MA: COMAP. 

Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics 

instruction – The Wiskobas project. Dordrecht, The Netherlands: Reidel Publishing. 

 

https://doi.org/10.1007/978-3-658-23115-6
https://doi.org/10.1533/9780857099419.3.110
https://doi.org/10.1533/9780857099419.3.110
https://doi.org/10.1007/978-94-007-6540-5_23
https://doi.org/10.1007/978-94-007-6540-5_23
http://dx.doi.org/10.4995/HEAd19.2019.9583
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://doi.org/10.1016/j.healthplace.2010.08.002
https://doi.org/10.1016/j.healthplace.2010.08.002
https://doi.org/10.1007/978-1-4419-0561-1_4
https://doi.org/10.1007/978-0-387-29822-1_1

