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modelling process. Nevertheless, students mostly do not knowingly and consciously use solution 

strategies when working on modelling tasks. Within the framework of our study, we investigated 

whether and to what extent knowledge about ideal-typical modelling processes has an effect on the 

structure of the solution processes of individuals. Individuals acquired this knowledge in our study 

in the form of an instruction that includes information about the modelling process, e.g., the 

modelling cycle and a solution plan. In this article, the structure of individual modelling routes of 

students who have received an instruction about modelling processes are compared with those 

students without such an instruction. The data in the study was collected, presented, and analysed 

using the Modelling-Activity-Interaction-Tool (MAI-Tool), which is also presented here. The MAI-

Tool is a newly developed instrument based on quantitative methods to capture and analyse 

structures and patterns of modelling processes in more detail than with previously known methods. 
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Resumo. Trabalhar em tarefas de modelação matemática é um desafio para os estudantes. Vários 

estudos demonstraram que o conhecimento sobre a modelação matemática, a um meta-nível, tem 

um efeito positivo sobre o processo de modelação. No entanto, os estudantes não utilizam estratégias 

de resolução, intencional e conscientemente, ao trabalharem em tarefas de modelação. No âmbito do 

nosso estudo, pretende-se saber se, e em que medida, o conhecimento sobre os processos ideais-

típicos de modelação tem um efeito sobre a estrutura dos processos de resolução dos indivíduos. Os 

indivíduos adquiriram esse conhecimento, durante o nosso estudo, no contexto de um ensino que 

incluiu informação sobre o processo de modelação, tal como, por exemplo, o ciclo de modelação e um 

plano de resolução. Neste artigo, a estrutura das rotas de modelação individuais dos estudantes que 

receberam instrução sobre os processos de modelação é comparada com a dos estudantes que não 

receberam tal instrução. Os dados do estudo foram recolhidos, apresentados e analisados, utilizando 

a Ferramenta de Modelação-Atividade-Interação (MAI-Tool), que também é aqui apresentada. O 

MAI-Tool é uma ferramenta recentemente desenvolvida com base em métodos quantitativos para 

captar e analisar estruturas e padrões de processos de modelação com mais detalhe do que com 

métodos previamente conhecidos.  

Palavras-chave: rotas de modelação individuais; estrutura dos processos de modelação; 

conhecimentos sobre processos de modelação; MAI-Tool. 

Introduction and research question 

The term mathematical modelling is understood as the process of solving real-world 

problems with the help of mathematical methods (Greefrath et al., 2013). The mathematical 

modelling process thus presupposes an intensive processing and solving of the problem. 

Problems from reality (the extra-mathematical world) are transferred to mathematics in a 

simplified form and, after being solved in mathematics, are returned to reality (Niss et al. 

2007). A modelling process usually consists of several turns of different steps, which can be 

idealised in a modelling cycle. The steps in the modelling process, also called phases, follow 

a fixed order. The transitions between the phases are described with the help of activities. 

Modelling cycles are used to illustrate the concept of mathematical modelling, to support 

learners in working on modelling tasks, especially in the area of metacognition, and to form 

the basis for empirical studies (Blum, 1996).  

In order to investigate modelling processes, the modelling cycle is often used as an 

analysis tool. With the help of a modelling cycle, individual modelling processes can be 

reconstructed and, on the basis of this, the process can be represented and analysed 

(Borromeo Ferri, 2010).  

The Modelling-Activity-Interaction-Tool (MAI-Tool) was developed to collect, represent, 

and finally evaluate modelling processes (Ruzika & Schneider, 2020). The modelling 

process is digitally recorded according to the phases of the modelling cycle. The evaluation 

is therefore based on the structure of the modelling cycle, e.g., phases and their transitions 
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as well as patterns. The analysis can thus not only be carried out qualitatively – as before – 

but also quantitatively since modelling processes are described with numerical data (see 

Section The Modelling-Activity-Interaction-Tool (MAI-Tool)). The quantitative evaluation 

gives us a more detailed insight into modelling processes, as it complements the qualitative 

evaluation. 

Several empirical studies have already shown that knowledge about the modelling 

process has a positive influence on the modelling process (Schukajlow et al., 2015; Stillman 

& Galbraith, 1998). This knowledge about mathematical modelling is usually communicated 

to students as a solution plan (Beckschulte, 2019; Schukajlow et al., 2015; Zöttl et al., 2011). 

In previous studies it was investigated whether students with a solution plan possessed 

more modelling skills than those without. With regard to the effectiveness of solution plans, 

empirical research has not yet been conducted to determine “whether the solution plan 

plays a role in the solution process or only influences the outcome” (Greefrath, 2018, p. 46).  

In an empirical study, we investigated individuals’ solution processes when working on 

a modelling task by comparing the individual modelling routes of students who were 

instructed about modelling processes with those who were not. The knowledge about 

modelling processes imparted to the individuals is given to them as an instruction. Thus, we 

neither analyse the influence on the result nor the differences in the modelling 

competencies, but we focus on the structure of the solution processes. In this article, we 

examine the individual modelling routes for differences in the number and duration of the 

phases that occur over total time during the modelling process. To make the values 

comparable, we choose the relative frequency in each case, i.e., we compare the relative 

number as well as the relative duration of each phase in the modelling process from 

individuals with and without instruction. 

Students aged 15-16 (10th grade of German High School – Gymnasium) participated in 

the study. The study was conducted as part of the mathematics lessons at school. In a group 

size of five, students worked on the “Filling-up” task (Blum & Leiss, 2006), for which they 

had about 30 minutes to solve. A total of 40 students were selected for the study. Before the 

students worked on the task, they were divided into two cohorts: one half received an 

instruction about ideal-typical modelling processes, the other did not. 

The instruction was based on the meta-level according to the guidelines of Borromeo 

Ferri (2018) and Vorhölter and Kaiser (2016). The instruction includes knowledge about 

the course of the ideal-typical modelling process in the form of a modelling cycle and the 

related solution plan. For this study, we have chosen the five-step modelling cycle of Kaiser 

and Stender (2013) (Figure 1), which, in addition to the instruction, also forms the basis for 

the evaluation of the individual modelling routes. The respective phases of the modelling 

cycle can be found in the five-step solution plan by Beckschulte (2019). Linking this 

modelling cycle and this solution plan is suitable for an instruction because the modelling 
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process can be represented graphically and also expressed verbally. In addition, a 

prototypical modelling problem was explained using the modelling cycle as an example: 

when colouring the map of Germany, it is relevant for the formation of the real model which 

federal states have a common border (Leuders, 2007). This is modelled in a graph where 

the nodes represent the federal states and a common border is represented by a common 

edge. By applying a short algorithm, the nodes are coloured so that the colour of the node 

corresponds to the colour of the federal state. This real solution is validated: a decision is 

made whether the real model can be improved. This modelling problem was chosen because 

it can be solved without mathematical formulae, so that the focus is on the steps of the 

modelling cycle. The instruction was always given by one of the researchers. The students 

were involved in the task by means of clarifying questions. In total, the instruction lasted 

about 20 minutes. While working on the modelling task, the modelling cycle was visible for 

the students. 

 

 

 

 

 

 

 

Figure 1. The modelling cycle (Kaiser & Stender, 2013) 

In the following, we will call the students who received such an instruction the instructed 

students and the students who did not receive an instruction the non-instructed students. 

Furthermore, we call the knowledge about modelling processes imparted to the individuals 

in the instruction meta-knowledge. However, we do not check to what extent they actually 

acquired this. 

We investigate whether instructed students proceeded differently when working on a 

modelling task than non-instructed students. Thus, the central research question in this 

article is:  

Does the knowledge about ideal-typical modelling processes obtained from an 

instruction influence the solution process structure of individuals when working on a 

modelling task, in particular, to what extent do the relative number and relative 

duration of the phases of instructed students differ from the non-instructed students? 

After presenting the theoretical background in the following section, the methodology as 

well as the study design are described. Then, the focus is on the results of the study and their 

interpretation. Finally, the last section discusses further research. 
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Theoretical framework 

In this section, central elements of the study’s theoretical framework are presented. The 

first subsection focuses on existing methods for collecting and analysing modelling 

processes. A new approach presented in the second subsection is the MAI-Tool. The third 

subsection treats the theory of meta-knowledge about mathematical modelling. Hypotheses 

are formulated in the fourth subsection, whose verification and interpretation are explained 

in section Results of the study.  

Analysis of individual modelling routes 

Methods and concepts that are suitable for the representation and analysis of modelling 

processes already exist: the solution processes when working on a modelling task can be 

analysed at the level of the individuals. These processes can be described and characterised 

with the help of ideal-typical modelling cycles.  

Empirical studies have already examined modelling processes when solving a modelling 

task (Borromeo Ferri, 2011; Matos & Carreira, 1997). It was found out that the modelling 

process – based on the modelling cycle – is not linear and switches back and forth between 

the phases. Borromeo Ferri (2007, p. 265) calls this an individual modelling route: “The 

individual starts this process in a certain phase . . . and then goes through different phases 

several times or only once”. It can also happen that some phases are omitted, while others 

are more pronounced. The individual modelling routes are “visible modelling routes” 

(Borromeo Ferri, 2007, p. 265), i.e., they are based on verbal statements and visible actions 

by the individuals.  

Individual routes are visualised on the modelling cycle by connecting successive phases 

with arrows (Figure 2).  

 

 

 

 

 

 

 

 

Figure 2. An individual modelling route by Borromeo Ferri (2010, p. 113) 

Thus, the modelling cycle is not only used for illustration, but also as an analysis tool. 

This representation can be used to reconstruct the structure in individual routes. With the 
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help of these patterns, the processes can be categorised and by means of this representation, 

a structural comparison of individual modelling processes is possible.  

Another concept for representing and analysing modelling processes is the Modelling-

Activity-Diagram (MAD) by Ärlebäck and Albarracin (2019) that captures activities instead 

of modelling phases. The activities describe what is to be done in the phases of a modelling 

cycle, e.g., the activity calculating refers to the mathematical model. The MAD gives a linear 

representation of the activities during modelling over time (Figure 3) and can be applied to 

a group but also to a single individual. 

 

 

 

 

 

 

 

 

 

Figure 3. The Modelling-Activity-Diagram (MAD) (created with the MAI-Tool) 

In both approaches, the data is interpreted using qualitative methods. Thus, results of a 

study are described using excerpts as examples. However, in order to investigate modelling 

processes in a more precise and a generalised way, the structure of the modelling processes 

should also be described with numerical data using a quantitative investigation instrument, 

so that an evaluation with statistical tests is also possible. A digital recording of the 

modelling processes facilitates its evaluation with numerical data. 

The Modelling-Activity-Interaction-Tool (MAI-Tool) 

The concepts of Borromeo Ferri (2011) and Ärlebäck and Albarracin (2019) for the analysis 

of modelling processes are incorporated and extended in a new research instrument: in the 

MAI-Tool, modelling processes are digitally recorded and evaluated using implemented 

algorithms (Ruzika & Schneider, 2020). Numerical data are determined from the qualitative 

data collection and allow a quantitative evaluation with statistical tests. 

The concept behind the MAI-Tool is based on interactions within the group while they 

work on the modelling task. An interaction is understood as the interdependence of the 

behaviour of two or more individuals, i.e., individuals refer to verbal or non-verbal acts of 

other group members (Kolbe & Boos, 2018). Interaction units are entered into the MAI-Tool 

and contain the following information: interacting person(s), duration as well as content of 

the interaction. A timestamp is added automatically. Interaction units can consist of several 
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acts of group members. This is the case when individuals react to each other through verbal 

or non-verbal communication, i.e., the acts are interdependent in terms of content. For 

example, the following acts are combined into one interaction unit. The phase real model is 

assigned to this interaction unit. 

Student 1:  If Mrs Stein refuels in Luxembourg, then we have to take into 
account the petrol consumed for the trip. 

Student 2:  Does anyone know what the fuel consumption of a car is? 
Student 3:  Let’s assume that the car consumes seven litres per 100 km. 

Furthermore, we consider an act or acts of a single individual as an interaction, even if 

they do not depend on any act of another group member.  

Student 1:  Underlines text passages on the task sheet. 
Student 2:  The variable x is the amount of petrol in litres and T(x) is then the 

cost of refuelling in Trier. 
Student 3:  Then let us now formulate the equation. 

The act of student 1 is in an interaction unit, while the acts of student 2 and student 3 are 

combined into one interaction unit, because student 1 is in the real model, but student 2 and 

student 3 are in the mathematical model. An interaction unit consists only of the acts that 

are interdependent, i.e., that follow each other in time and are assigned to the same phase. 

Interaction units are entered into the MAI-Tool; improvements to the entries are 

possible ad-hoc as well as retrospectively (Figure 4). 

 

 

 

 

 

 

 

 

 

Figure 4. Input and improvement of the data in the MAI-Tool 

To finally present and evaluate the data, a mathematical model is used, on the basis of 

which the modelling process of the group over time is structurally understood as a dynamic 

social network. This model contains the information about who interacts with whom in 

which phase of the modelling cycle and for how long. Here, the nodes of the network 

represent the individuals and the edges, which appear and disappear over time, represent 
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the interaction. Each interaction is assigned to a phase of the modelling process: each edge 

is coloured with the corresponding colour of the phase (Figure 5).  

 

 

 

 

 

 

Figure 5. Excerpts from the Modelling-Activity-Interaction-Network (MAIN) 

The modelling process can be represented at any point in time. Ruzika & Schneider 

(2020) call the network Modelling-Activity-Interaction-Network (MAIN). 

The evaluation of the individual modelling routes is based on the MAIN, i.e., data are 

extracted from the MAIN and automatically prepared for each individual. In addition, it is 

possible to select which properties of the modelling process are to be evaluated, e.g., phase 

transitions, phases, blocks, and patterns (Figure 6). Section Data collection with the MAI-

Tool presents and explains the evaluation features for this study. 

 

 

 

 

 

 

 

 

Figure 6. Evaluation mask in the MAI-Tool 

Meta-knowledge about the mathematical modelling process 

Dealing with modelling problems in the form of mathematical modelling tasks is complex 

and therefore challenging for students (Blum, 2015). As the solution process of such a task 

consists of several steps, each sub-step of the modelling process can represent a cognitive 

hurdle (Blum, 2015; Galbraith & Stillman, 2006): students are challenged to develop their 

own solution approaches that include mathematical procedures in addition to deciding 

which assumptions are relevant for developing a solution.  
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Several studies have shown that students generally do not follow a conscious strategy 

when solving modelling tasks and they often do not know how to proceed when difficulties 

arise (Blum, 2015; Kaiser et al., 2015). In particular, a lack of metacognitive skills can cause 

problems when working on a modelling task. Metacognitive modelling competencies can be 

divided – based on the theories of metacognition – into declarative meta-knowledge and 

procedural metacognitive strategies (Flavell, 1979; Vorhölter et al., 2019). The first group 

includes knowledge about features of modelling tasks, solution strategies, and knowledge 

about one’s own abilities and those of group members. Students are taught to choose their 

own solution approach by making simplified assumptions to develop the corresponding 

model. Different approaches are possible. The contextual knowledge presented in the task 

is not sufficient to solve the task, so assumptions have to be made and extra-mathematical 

knowledge has to be included. The modelling cycle, for example, is suitable for teaching 

strategies for solving modelling tasks. The individual steps of the modelling process can be 

illustrated and explained using this cycle. The use of metacognitive knowledge is judged to 

be increasingly relevant for processing a modelling task, as several studies point out 

(Stillman, 2011). Therefore, there is a demand to apply strategies to overcome cognitive 

hurdles in the processing of modelling tasks (Stillman, 2004). But which measures can be 

taken to support students in solving a modelling task? When using the modelling cycle as a 

solution plan, the focus is on the sub-processes, i.e., the phases. A solution plan usually 

consists of the presentation of a modelling cycle, where each phase or each transition 

between the phases is described in more detail by means of activities. These are supported 

with questions or prompts (Brand & Vorhölter, 2018). Such a solution plan belongs to the 

indirect general strategic aids, as there are no concrete aids related to the problem of the 

task (Borromeo Ferri, 2006). Greefrath (2014) has presented several variants of solution 

plans, which differ in the number as well as the type of steps, among other things. The four-

step solution plan, which can be found in Blum (2007), comprises the sub-steps understand-

ing the task, creating the model, using the mathematics, and explaining the result. Zöttl et al. 

(2011) limit their solution plan to three steps and neglect the step using the mathematics in 

comparison to the four-step solution plan. Beckschulte (2019) developed a five-step 

solution plan in which the step of validating the result and the solution is emphasised.  

By presenting the entire solution process in the form of the solution plan, it is possible 

to acquire meta-knowledge about the processing of modelling tasks: “[The] solution plan is 

not meant as a schema that has to be used by the students’ but as an aid for difficulties that 

may occur in the course of the solution process” (Blum & Borromeo Ferri, 2009, p. 55). This 

information should be known to the students before they start working on the task, as in 

this way possible problems can be anticipated and reduced. Results of empirical studies 

have also already shown that the use of solution plans serves as an orientation aid for the 
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students (Maaß, 2004): hurdles in the respective phases of the modelling process are 

reduced.  

Hypotheses of the study 

The aim of the empirical study is to find out whether and to what extent the solution 

processes of the instructed students differ from those of the non-instructed students when 

working on a modelling task and how this is noticeable in the structure of the modelling 

processes. We want to examine this by testing hypotheses. The hypotheses are based on the 

modelling cycle of Kaiser and Stender (Figure 1).  

The hypotheses test the extent to which the relative number and relative duration of a 

phase aggregated over the total time of the modelling process differs in the two cohorts. By 

the relative number of a phase we mean the relative frequency of the occurrence of that 

phase in the modelling process. Similarly, the relative duration indicates the relative 

frequency in relation to the duration of a phase in the entire modelling process. There are 

expected differences in the occurrence and duration of certain phases in the modelling 

processes, which we formulate below. 

Non-instructed students do not take much time to analyse the initial problem in contrast 

to the instructed students. The latter take more time to understand the modelling task and 

accordingly, they also switch more often to the phase real situation. 

 (H1) The relative number of times that individuals switch to the phase real situation 

as well as its relative duration are significantly higher for the instructed than for the 

non-instructed students. 

Without any knowledge of the ideal-typical modelling process, individuals have 

difficulties developing a mathematical model and consequently difficulties solving it. 

Instructed students should therefore spend more time and switch more often to the phases 

mathematical model and mathematical solution during the modelling process. This means 

for the relative number and relative duration of the phases: 

 (H2) The relative number of times that individuals switch to the phase mathematical 

model as well as its relative duration are significantly higher for the instructed than 

for the non-instructed students.  

 (H3) The relative number of times that individuals switch to the phase mathematical 

solution as well as its relative duration are significantly higher for the instructed 

than for the non-instructed students.  

The modelling cycle can be divided into the real world and the mathematical world 

(Pollak, 1979). The real world contains phases that can be assigned to reality: real situation, 

real model, real solution. Thus, the mathematical world includes the mathematical model and 

the mathematical result. Derived from the hypotheses (H2) and (H3), it can be assumed that 
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instructed students focus more on the mathematical world as they spend more time and 

longer in the phases mathematical model and the mathematical result: 

 (H4) The relative number and the relative duration of the phases taking place in the 

mathematical world are significantly higher for the instructed than for the non-

instructed students. 

Methodology and design of the study 

The following section presents the methodology and the next the study design. This study 

follows a mixed-methods approach. The data collection and documentation are qualitative, 

while the data is analysed quantitatively with a statistical test.  

Methodology 

The investigation of structures in individual modelling processes requires a qualitative 

approach. Since the influence of an instruction about the modelling process is also being 

investigated, i.e., the extent to which solution processes of instructed students differ from 

the non-instructed students, a quantitative approach is also necessary. Therefore, a mixed-

methods approach is pursued in this study, in which qualitative and quantitative 

procedures are combined in order to achieve the highest possible gain in knowledge 

(Döring & Bortz, 2016). 

The combination of both research approaches is necessary for this study. The students' 

individual modelling routes are reconstructed and documented on the basis of observation. 

This is only possible if the modelling processes are recorded and subsequently collected in 

detail. Consequently, the collection and documentation are qualitative. Each individual 

modelling process is documented with regard to frequencies concerning certain 

characteristics to be investigated, in order to then evaluate it statistically on the basis of 

these facts. Therefore, the evaluation is assigned to the quantitative approach.  

The data documentation is done qualitatively according to the Grounded Theory (Strauß 

& Corbin, 1996). The central process is coding. In the construction of the coding scheme, the 

underlying ideal-typical modelling cycle by Kaiser and Stender (Figure 1), including the 

phase descriptions, was used as a framework. This knowledge and the individual terms of 

the phases are used to develop theoretical codes. These are complemented by in-vivo codes 

added to the coding scheme during the coding process. Each unit of interaction is assigned 

a theoretical code as well as the names of the people involved. 

The inputs are automatically processed and evaluated in the MAI-Tool for each 

individual. Then the data is statistically analysed. Since a small sample size (N=40) is 

examined in the study, a non-parametric procedure is needed, which, in contrast to t-tests, 

requires fewer prerequisites. Only the prerequisites that the samples are independent and 

the dependent variable (the respective characteristic to be examined) is ordinally scaled 
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must be fulfilled, which is, in fact, the case. Since the two samples are independent, 

significant differences between the instructed and non-instructed students can be detected 

with the Mann-Whitney-U-test. A prerequisite for a significant result is that the p-value for 

the tested hypothesis is smaller than 0.05. The two samples are compared in terms of their 

mean values (of the dependent variables). Since we test directed hypotheses, i.e., whether 

one cohort has a higher or lower mean value than the other, one-sided testing is carried out. 

Design of the study 

The sample of the study comprises 40 students aged 15-16 from four 10th grade classes 

from different High Schools. The study was conducted at school during mathematics 

lessons. Each class was divided into a cohort that received an instruction about modelling 

processes and a cohort that did not receive such an instruction. For this purpose, the cohorts 

were placed in different rooms.  

Before groups were formed in each cohort to work on the modelling task, each student 

was given a questionnaire to test the knowledge about mathematical modelling. This 

questionnaire includes questions about whether the students have worked on a modelling 

task before, e.g., in regular classes, in school projects or in extracurricular projects. In 

addition, it was asked whether the students know how the process of solving a modelling 

task works, i.e., whether they have already gained knowledge about the procedure of a 

modelling process at the meta-level. Although modelling is required as a competence in the 

curriculum, it is treated differently by each teacher in the mathematics lessons. Within each 

cohort, groups of five students were formed based on the results of the questionnaire and 

one group participated in the study. These students indicated in the questionnaire that they 

had not previously worked on a modelling task or received knowledge about the modelling 

process. By selecting only those students without modelling experience for the study, the 

influence of previous experience was to be excluded. In total, four groups with instruction 

and four groups without instruction participated, i.e., n1=20 instructed students and n2=20 

non-instructed students. 

Each group within the cohorts completed the “Filling-up” task (Blum & Leiß, 2006), 

regardless of whether they participated in the study or not. The task is about the question 

whether it is profitable for a certain Mrs. Stein to drive from her home town, Trier, across 

the border to Luxembourg in order to fill up her tank there because the petrol is cheaper. 

The groups had about 30 minutes to work on the task, although they were given a few extra 

minutes if they were close to finding a solution. The groups that took part in the study were 

videorecorded while working on the problem. The groups – regardless of cohort and 

participation in the study – did not receive any additional assistance during the processing. 

Thus, the solution processes are not influenced by help from the teachers. 
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In the study, all groups worked on the same task, so that a possible different solution 

process is not due to the respective modelling task. Thus, the same framework conditions 

were created for all groups, so that there were no differences within the instructed and non-

instructed groups. Figure 7 presents an overview of the study design. 

 

 

 

 

 

 

 

Figure 7. Design of the study 

Data collection with the MAI-Tool 

Since the focus in the study is on the structure, we concentrate on verbal and non-verbal 

communication in the form of interactions that can be observed when documenting the 

modelling processes. Cognitive processes are not recorded, as they are not relevant for the 

structure.  

The coding scheme was created on the basis of the videorecorded groups. As already 

mentioned, the coding procedure is applied in the sense of Grounded Theory according to 

Strauß and Corbin (1996). The modelling process is divided into coding units, where the 

following information is documented: who is interacting (with whom)? In which phase of 

the modelling process are the individuals/the individual? When does the coding unit start 

and end? A coding unit can consist of one or more individuals. Each new interaction unit 

that occurs is documented, i.e., it is event-driven coding and not at fixed points in time. 

  

 

 

 

 

 

 

 

Figure 8. The coding scheme  



On the influence of knowledge… 233 

 

Quadrante 30(2) 220-241 

 

In the coding guide, it is excluded that an individual is involved in two simultaneous 

coding units, as this facilitates the evaluation. A new coding unit is chosen if there is a change 

of speaker that does not relate (in terms of content) to the current coding unit or if an 

individual move to another phase. A coding unit consists of structural codes and a 

theoretical code (Figure 8): 

 structural codes: individuals, group, instruction (yes/no), duration of the coding unit 

 theoretical code: phases of the modelling process. 

In addition to the phases of the modelling cycle, in-vivo codes have been added to the 

coding scheme: checking the plausibility of the solution cannot be clearly assigned to a 

phase, so validating is added as a sub code. If the group recapitulates, documents or 

summarises the solution process, this is coded with the sub code summary solution process. 

Interactions that are not thematically concerned with the processing of the modelling task 

are coded with miscellaneous. Miscellaneous includes off-task speech as well as off-task work 

and is coded exactly when the interaction is clearly not related to the task or when no other 

sub-activity (e.g., entering into the calculator) is observed. In the further course of the 

article, the term phase includes in addition to the phases of the modelling cycle the sub 

codes validating, summary solution process and miscellaneous. The coding guide defines 

when an interaction is assigned to which phase. Figure 8 briefly describes each phase. After 

the modelling process has been coded and entered into the MAI-Tool in a first run, the inputs 

can be checked and improved in the “edit mode” (Figure 4). 

In order to ensure reliability for the recording of the modelling processes as well as for 

the coding, the data were coded by two persons. The second coder received training so that 

all observations were coded under comparable conditions. Cohen’s Kappa (Cohen, 1960) 

was used to check the interrater reliability for each individual, which ranged from κ= [.72, 

.90]. Since the time component also plays a role in checking the interrater reliability, the 

agreement of the theoretical code was checked for each second.  

Before the modelling processes are statistically evaluated, the data are automatically 

output in the MAI-Tool for each individual. The phases are evaluated according to their 

number of occurrences and their duration. Table 1 shows a concrete example: on the one 

hand, the absolute and relative frequency of how often an individual was in a given phase is 

calculated. The temporal duration, summed up over the total time of the modelling process, 

is also calculated for each phase. Here, too, the absolute and relative frequencies are 

calculated. Looking at the phases in terms of occurrence as well as duration provides a 

complete view of the phases: even if the number of occurrences of a phase is high, this does 

not necessarily mean that the temporal duration is also high. 
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Table 1. Excerpts from the evaluation in the MAI-Tool: the occurrence (left) and duration 
(right) of the phases for an individual in the modelling 

Phases Absolute 

frequency 

(occurrence) 

Relative frequency 

(occurrence) 

Total duration Relative duration 

real situation 6 6.7% 01:09 3.7% 

real model  25 28.1% 06:47 21.7% 

mathematical 

model 

10 11.2% 02:35 8.3% 

mathematical 

solution 

4 4.5% 00:30 1.6% 

real result 6 6.7% 01:42 5.4% 

validating 2 2.2% 00:30 1.6% 

summary 

solution 

process 

18 20.2% 07:53 25.2% 

miscellaneous 18 20.2% 05:59 19.1% 

Statistical evaluation of the data 

As explained before, the Mann-Whitney-U-test is applied to detect significant differences 

between the instructed and non-instructed students. The significance level is set at α=0.05. 

The aim of the statistical test is that the null hypothesis is rejected, because then the test 

gives a significant result. Therefore, the hypotheses formulated are used as alternative 

hypotheses. 

Afterwards, the effect size of the test is computed, which enables an exact specification 

of the alternative hypothesis and is calculated depending on the statistical test. The effect 

size 𝛿 is calculated according to Fritz et al. (2012) and interpreted according to Cohen 

(1988). The Mann-Whitney-U-test and the calculation of the effect size for this study are 

carried out with the use of the software R.  

Since we are testing multiple hypotheses from one data set, these analyses are corrected 

using the Benjamini-Hochberg method to control for multiple comparisons and false 

discovery rate (FDR) (Benjamini & Hochberg, 1995).  

Results of the study 

In this section we present the results of the study. The first subsection compares the 

instructed and the non-instructed students. The results are then interpreted in the second 

subsection.  
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Comparison of individual modelling routes with and without instruction 

about ideal-typical modelling processes 

The hypotheses (H1)-(H4) are tested using the Mann-Whitney-U-test, the results of which 

are shown in Table 2. The p-values for the respective variables are always below the 

significance level of 5% (α=0.05). From this we conclude that all hypotheses that correspond 

to the alternative hypothesis in the Mann-Whitney-U-test are accepted. For each hypothesis, 

the effect size is at least weak. The values of the effect sizes for each hypothesis underline 

that an effect is measured.  

Table 2. Results of the Mann-Whitney-U-test for group 0 (non-instructed students) and group 
1 (instructed students) with p-values and effect size 𝛿 (rounded to 3 decimal positions) 

Variable 

(corresponding 

hypothesis) 

Mean value  

Group 0 

Standard 

deviation 

Group 0 

Mean value  

Group 1 

Standard 

deviation 

Group 1 

p-value Effect size 𝛿 

relative number 

real situation 

(H1) 

16.3% 0.077 22.1% 0.118 0.042 0.242 

relative duration 

real situation 

(H1)  

9.4% 0.042 13.4% 0.057 0.01 0.328 

relative number 

mathematical 

model (H2) 

16.8% 0.142 22.5% 0.110 0.019 0.289 

relative duration 

mathematical 

model (H2) 

12.6% 0.133 17.8% 0.109 0.032 0.259 

relative number 

mathematical 

result (H3) 

1.2% 0.016 3.8% 0.024 < 0.001 0.459 

relative duration 

mathematical 

result (H3) 

0.6% 0.008 3.6% 0.025 <0.001 0.51 

relative number 

mathematical 

world (H4) 

18% 0.145 26.2% 0.112 0.019 0.292 

relative duration 

mathematical 

world (H4) 

13.1% 0.138 21.4% 0.127 0.011 0.322 

During the evaluation, a new, previously unexplored phenomenon occurred, which we 

describe in more detail. Parts of speech that did not refer to the processing or the solution 

process of the modelling task were coded with miscellaneous. This was added to the coding 
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scheme during the coding process because a huge number of such parts of speech were 

observed. The mean values for relative number and relative duration of miscellaneous for 

the non-instructed students are higher than those of the instructed students. The 

application of the Mann-Whitney-U-test as well as the calculation of the effect size show that 

instructed and non-instructed students differ significantly. More precisely, the relative 

number as well as the relative duration of miscellaneous are significantly higher for the non-

instructed students than for the instructed students (Table 3).  

The mean values of both cohorts also differ in the relative number and the relative 

duration of the phase summary solution process: The mean values of the non-instructed 

students are higher than those of the instructed students. Here, too, the application of the 

Mann-Whitney-U-test showed this difference to be significant. 

Table 3. Results of the Mann-Whitney-U-test for group 0 (non-instructed students) and group 
1 (instructed students) with p-values and effect size 𝛿 (rounded to 3 decimal positions) for 
summary solution process and miscellaneous 

Variable  Mean value  

Group 0 

Standard 

deviation 

Group 0 

Mean value  

Group 1 

Standard 

deviation 

Group 1 

p-value Effect size 𝛿 

relative number 

summary 

solution process 

7.8% 0.080 1.2% 0.013 0.029 0.267 

relative duration 

summary 

solution process 

7% 0.078 0.08% 0.01 0.022 0.28 

relative number 

miscellaneous 

16.7% 0.134 7.3% 0.083 0.004 0.36 

relative duration 

miscellaneous 

14.8% 0.113 4.1% 0.053 0.001 0.434 

Interpretation of the results  

The results of this study show that a deeper analysis becomes possible with the MAI-Tool. 

After a qualitative input of the data, algorithms reproduce it quantitatively in numerical 

data. The evaluation is ad-hoc, as the data is available digitally. 

Testing the hypotheses with the Mann-Whitney-U-test proved the validity of the 

statements. The results are illustrated by two typical cases: Simon as an instructed student, 

and Emil as a non-instructed student. On the one hand, the individual modelling processes 

are illustrated in a diagram, where the process and the duration of the phases can be seen 

(Figure 9). The white bars in the diagram show that at this point the individual is not in any 

phase, i.e., does not make any observable action. This representation provides an overview 
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in comparison to a modelling cycle. It shows which phases follow one another and how long 

the individual was in the phase. The relative number of occurrences of each phase is shown 

(Figure 10).  

 

 

 

 

Individual modelling route of Simon. 

 

 

Individual modelling route of Emil. 

Figure 9. Individual modelling routes in a diagram (the meaning of the colours can be found in 
Figure 10) 

Emil does not take much time at the beginning to understand the problem of the 

modelling task and does not deal with the problem intensively. Simon, on the other hand, 

deals with the problem for a long time at the beginning and turns back to the phase real 

situation again (Figure 9).  

The comparison of Simon and Emil illustrates the result of the statistical test: instructed 

students thus stay significantly longer and turns more often in the phase real situation, since 

it was made clear in the instruction that understanding the task is the basis for the solution 

process.  
 

 

 

 

 

Figure 10. Relative number of the occurrences of the phases of Simon (left) und Emil (right) 

The mathematical world – consisting of the phases mathematical model and mathemat-

ical solution – has a low part in individual modelling routes without instruction compared 

to those with instruction, seen over the entire modelling process. A look at the mathematical 

world in Emil’s modelling process shows that the relative number and the relative duration 

of the phases mathematical model and mathematical solution are low. The modelling route 
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in Figure 10 underlines that Emil did not spend much time in these phases. In contrast, the 

part of mathematical world is higher for Simon: the relative part and the relative duration 

of mathematical model and mathematical solution are higher than for Emil. This can be 

attributed to the influence of the given instruction about ideal-typical modelling processes. 

Within the instruction, the creation of the mathematical model was first discussed using an 

example and then generalised using the modelling cycle. The model becomes more complex 

the more assumptions are made, i.e., the more properties of reality are included in the 

model, the more difficult it becomes. The instruction made the students aware that the 

mathematical model is more complex than it appears at first sight. This has an effect on the 

relative number and the relative duration in the modelling process that the students engage 

more intensively with mathematics.  

A new feature of the modelling process that has not yet been investigated are the phases 

summary solution process and miscellaneous. The relative number and relative duration of 

miscellaneous, i.e., the interactions that are context-independent, are higher for Emil than 

for Simon. Since the relative number as well as the relative duration are higher in each case, 

Emil is busy not talking about the task often and for a long time. Looking at the individual 

modelling process in Figure 9, it becomes apparent that he is often preoccupied with things 

other than the modelling task towards the end (from minute 16). It can be concluded from 

this that he lacked knowledge about the modelling process and was therefore unable to 

proceed in a structured manner. In contrast to Emil, Simon's behaviour is different: the 

relative number as well as the relative duration are low. This means that he rarely deviates 

from the processing in the solution process, and if he deals with something else, then this is 

brief and he switches back to a phase of the modelling cycle.  

Not only the context-independent interactions, but also the phase summary of the 

solution process is higher in the relative number and relative duration for non-instructed 

students than for instructed students. Especially towards the end of the solution process, 

Emil is frequently busy with the recapitulation of the solution process which takes a long 

time in total. In contrast, Simon is mostly in the mathematical model. It can be concluded 

from this that non-instructed students limit themselves to their solution, while instructed 

students continue to be interested in an (improved) solution. 

Based on the comparison of Simon’s and Emil’s modelling routes and the results of the 

statistical test, it can be seen that instructed students deviate less from the processing of the 

modelling task than the non-instructed students. This means that the given knowledge 

about the modelling process has an influence on the solution process, as students work on 

the task in a more structured way. 

Based on the structure of the modelling process, it could be determined that the 

instructed students were oriented towards the solution plan. Based on the results of the 
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statistical test, we can generalise the structure of the individual modelling routes of the 

instructed and non-instructed students:  

 Individuals with an instruction about ideal-typical modelling processes take time to 

understand the task. They engage often and for a long time in the mathematical world 

by formulating a mathematical model and solving it. They engage in the solution 

process and rarely recapitulate their previous solution. Possibly because they know 

the modelling process, they rarely and only briefly digress from the topic of the task.  

 Individuals without an instruction about ideal-typical modelling processes create a 

model after a short orientation phase. This leads to problems in creating and solving 

the mathematical model, which is why they only deal with the mathematics for a short 

time. Due to the lack of an instruction, the individuals often talk for a long time about 

topics that have nothing to do with the task. Possibly because they are unable to 

proceed in a structured manner, they summarise their already elaborated solution to 

the task instead of further improving their model. 

Further Perspectives 

In this article, we point out the differences in the structure of the modelling routes of 

instructed and non-instructed students. They differed significantly in the relative number 

and relative duration of the phases real situation, mathematical model, mathematical 

solution, summary solution process and miscellaneous. We interpret these differences as due 

to the influence of the given instruction. Since we have so far looked at the relative number 

and relative duration of the phases aggregated over the entire modelling process, we intend 

to examine in a next step at which points in time certain phases occur more frequently and 

more often. In order to be able to investigate the structure of individual modelling routes 

even more precisely, we will develop a concept to describe them on the basis of patterns. 
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