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Abstract. This study investigates the role of computational thinking (CT) within mathematical 

modelling projects in secondary school mathematics education. We conducted a four-day 

mathematical modelling project with 14 students from grades 9 to 11 during a project week before 

summer vacations at a secondary school in Germany. Our observations revealed that various CT 

aspects, such as data collection, pattern recognition, and abstraction, naturally emerged in students' 

modelling activities, with these aspects being closely tied to the specific nature of the modelling 

problems. These findings suggest that mathematical modelling projects offer rich opportunities to 

develop CT skills in students. Furthermore, our research highlights how fostering CT can enrich the 

https://orcid.org/0009-0008-8424-098X
https://orcid.org/0000-0002-1869-3189
https://orcid.org/0009-0009-1238-5546


Exploring aspects of computational thinking in mathematical modelling projects… 131 

 

Quadrante 33(2) 130-150 

 

modelling process and assist students in the mathematical problem-solving process. By illustrating 

the synergy between CT and mathematical modelling, this study underscores the potential of 

integrating computational thinking into mathematics education to prepare students for the 

challenges of the digital age.  

Keywords: computational thinking; mathematical modelling; mathematics education; secondary 

education; problem solving; STEM education. 

Resumo. Este estudo investiga o papel do pensamento computacional (PC) em projetos de mode-

lação matemática na disciplina de matemática no ensino secundário. Conduzimos um projeto de 

modelação matemática de quatro dias com 14 alunos do 9º ao 11º ano, durante uma semana de 

projetos, antes das férias de verão, numa escola secundária na Alemanha. As nossas observações 

revelaram que vários aspectos do PC, como a coleta de dados, o reconhecimento de padrões e a 

abstração, emergiram naturalmente nas atividades de modelação dos alunos, com esses aspectos 

estando intimamente ligados à natureza específica dos problemas de modelagem. Esses resultados 

sugerem que os projetos de modelação matemática oferecem oportunidades profícuas para desen-

volver capacidades de PC nos alunos. Além disso, a nossa investigação destaca como o incentivo do 

PC pode enriquecer o processo de modelação e ajudar os alunos no processo de resolução de proble-

mas matemáticos. Ao ilustrar a sinergia entre o PC e a modelação matemática, este estudo sublinha 

o potencial de integrar o pensamento computacional na educação matemática para preparar melhor 

os alunos para os desafios da era digital. 

Palavras-chave: pensamento computacional; modelação matemática; educação matemática; ensino 

secundário; resolução de problemas; educação STEM. 

Introduction 

Although the relationship between computational thinking and mathematics has been an 

active area of research (Ye et al., 2023), work in the field of computational thinking and 

mathematical modelling seems to be lacking. 

Ang (2021) compared different modelling approaches and identified several possibilities 

for aspects of computational thinking (abstraction, decomposition, pattern recognition and 

algorithms) to occur, stating that those ideas would have normally been observed as 

mathematical problem solving. He concluded that the ability to make use of computational 

tools is a key aspect that differentiates computational thinking and mathematical modelling 

and also benefits the latter. 

Villa-Ochoa et al. (2022) investigated a mathematical modelling course where future 

teachers were tasked with developing a mathematical modelling project, highlighting the 

work of one group that focused on the use of digital tools. They analysed the developing 

process and identified multiple instances of computational thinking aspects present in the 

modelling project.  

Regarding further empiric research, Teck et al. (2023) looked at the development of com-

putational thinking during a mathematical modelling project with seven students from a 
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private school in Malaysia. They rated the students’ abilities in different aspects, like 

decomposition, from 0 to 2 based on observations of the modelling process, interviews with 

the students as well as a test deployed before and after the modelling and found improve-

ments over the course of individual and group modelling tasks. 

This study aims to further contribute to the empirical body of literature by highlighting 

the aspects of computational thinking found in mathematical modelling projects with 

secondary school students and identifying opportunities for computational thinking and 

mathematical modelling to benefit each other. 

Theoretical background 

Mathematical modelling 

In this article, we understand mathematical modelling as the process of translating a real 

life problem into a mathematical model and solving the problem by using that model 

(Greefrath & Vorhölter, 2016). 

Over the years, the theoretical background of mathematical modelling has evolved and a 

series of “modelling cycles” have emerged that illustrate the underlying process, with the 

modelling cycle of Blum & Leiß (2007) being one of the most prominent ones. Based on that 

cycle, Greefrath (2011) looked at the influence of digital tools on modelling and developed 

a modelling cycle that takes into account a computer model when working with digital tools. 

To use a digital tool, the mathematical model has to be first translated into a computer 

model. Then the computer can produce a computer solution, which can be translated back 

into a mathematical solution and then be interpreted in the real context. 

Modelling projects, as regarded in this study, are characterized by open problems from 

authentic and real-life contexts. To enable students to carry out such projects, several uni-

versities in Germany implemented so called “modelling weeks” and “modelling days”, which 

were carried out for example since 1993 at the university of Kaiserslautern, even partly 

with support of industry partners (Bock & Bracke, 2015; Greefrath & Vorhölter, 2016). 

The aim of modelling weeks or days is to provide an opportunity for students to solve 

mathematical modelling problems independently. Both modelling weeks and days have a 

similar structure, starting out with the presentation of “authentic problems” (Bock et al., 

2017), from which the students can choose, before going into a free working phase in 

groups. The students will than work over the course of a few whole school days or a week 

on the given modelling problem before presenting a possible solution, usually repeating the 

steps of the modelling cycle several times. The steps do not necessarily happen in order and 

individual “modelling routes” (Borromeo Ferri, 2007) can be observed. 

Using authentic problems often comes with a form of product orientation of the 

modelling process. Although presentations can be seen as a form of product, this generally 
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includes algorithms, computer programs or prototypes that can be used by the client, that 

is, the problem poser. The client and the product can then act as an external control to 

provide another form of support when carrying out modelling projects (Bock et al., 2017). 

Computational thinking 

Since the influential article of Wing (2006) multiple authors proposed possible definitions 

and frameworks for the term Computational Thinking (CT). One of the most cited definitions 

by Cuny et al. (2010, as cited in Wing, 2010) describes CT as “the thought processes involved 

in formulating problems and their solutions so that the solutions are represented in a form 

that can be effectively carried out by an information-processing agent”. 

Since then, further definitions and multiple frameworks have been proposed to define, 

what thought processes and aspects are part of CT. Dong et al. (2019) consider pattern 

recognition, abstraction, decomposition, and algorithms to be the cornerstones of CT. Selby 

and Woolard (2013) additionally view the aspect of evaluation as part of CT and replace 

pattern recognition with the broader term of generalisation. 

Weintrop et al. (2016) consider the implementation of CT in science and mathematics 

classrooms and defined a taxonomy of twenty-two CT practices, which are categorized into 

data practices, modelling & simulation practices, computational problem-solving practices, 

and systems thinking practices. The taxonomy comprises a wide variety of different practices 

such as collecting data, designing computational models, debugging or programming. 

Following a review of existing frameworks, Shute et al. (2017) developed a framework 

focused on the foundational understanding of CT in K-12 subjects. They consider CT to be 

composed of the six CT facets: decomposition, abstraction, algorithms, debugging, iteration, 

and generalisation. They also identify three subcategories of abstraction, which are data 

collection and analysis, pattern recognition and modelling, and subcategories of the algo-

rithm facet, which are algorithm design, parallelism, efficiency, and automation.  

Kallia et al. (2021) focus on the intersection of CT and mathematical thinking (MT). They 

consider both to be problem solving processes that emphasise contextualisation, which is 

the translation from real world situations to a mathematical or computational model and 

vice versa. They identified four distinct cognitive activities in this process: (1) translating 

from a context into a model, (2) working within the model, (3) translating the result from 

the model back into the context and (4) verifying that the solution solves the problem. This 

is depicted in Figure 1. 

Furthermore, Kallia et al. (2021) view combining MT and CT as using mathematics as a 

context for CT, from which they obtained their process model in Figure 2. This characteri-

sation of CT in the context of mathematics is structurally similar to the mathematical 

modelling cycle under the influence of digital tools (Greefrath, 2011). 
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Figure 1. Contextualisation activities. The model layer can be either of mathematical or 
computational nature (adapted from Kallia et al., 2021) 

 

Figure 2. CT in the context of mathematical thinking (adapted from Kallia et al., 2021) 

Regarding the implementation of CT in mathematics education, Kallia et al. (2021) 

conducted a literature-informed Delphi study to identify the aspects of CT that can be 

addressed in mathematics courses: data analysis, data representation, abstraction, 

decomposition, algorithmic thinking, pattern recognition, automation, modelling, 

generalisation, and evaluation. 

Methodology 

Mathematical modelling and CT describe problem solving processes, that, considering the 

cycles of Greefrath (2011) and the model by Kallia et al. (2021) in Figure 2, follow similar 

steps. As modelling is also present in multiple CT frameworks such as those of Weintrop et 

al. (2016) and Shute et al. (2017), the relationship of CT and mathematical modelling should 

be investigated more closely, especially when considering to enhance mathematics educa-

tion with CT.  Therefore, our research addresses the following two research questions, with 

the first being the primary focus of this paper:  

1. What aspects of CT are present in mathematical modelling projects with students? 

2. How can CT be fostered by mathematical modelling and how can CT support the 

mathematical modelling process? 

To answer our research questions, we observed the mathematical modelling activities 

during a modelling project with fourteen students from grade 9 to 11 at a secondary school 

in Germany. This project was part of a project week at that school before summer holidays 

and the modelling project was offered by a teacher (T) supported by two researchers (R1 

and R2) and a trainee teacher (TT) as supervisors. The project week spanned four days of 
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working in the respective projects and one day presenting the projects at a school festival, 

following a similar structure as modelling weeks. Rather than observing a modelling week 

explicitly designed to foster CT, the observed project week was proposed by the teacher T 

without having CT in mind and the researchers were asked to support the project. 

Seven modelling problems were offered, of which five were proposed by the students 

and two by the researchers. The students were free to use the time until the presentation 

day as they regarded meaningful for their chosen problem, leaving them with overall 18 

hours (including breaks) to work on the problems over the four days. The researchers and 

teachers supervised the modelling activities and only assisted when problems emerged or 

the groups had questions, and helped as much as needed but as little as possible, following 

the “principle of minimal help” (Aebli, 2019, p. 300). 

The groups of students moved freely around the school. Due to logistical reasons and 

privacy issues of non-participating students, audio or video recording wasn’t feasible and 

data was collected via participant observation. 

The modelling activities in the project were observed by R1 and field notes were taken 

of scenes that were deemed to be relevant for the research questions. After each day, an 

observation protocol was created based on the field notes. The transcripts presented in the 

result sections are therefore close representations of the dialogues as noted by R1 in the 

field notes and should be treated as such.  

The observation protocols were coded by three researchers for emerging or underlying 

CT aspects in a deductive qualitative content analysis approach based on Mayring (2014). 

The coding scheme for the qualitative content analysis on the observation protocols was 

based on the CT aspects and cognitive activities given by Kallia et al. (2021), as the 

framework considered CT aspects explicitly in mathematics courses and linked CT to 

mathematical modelling. After a first overview of the material, the aspects of debugging and 

data collection were added, which can also be found as aspects of CT in Shute et al. (2017). 

It could be argued that part of analysing data is to collect data beforehand, but we viewed 

this as its own process, similar to Weintrop et al. (2016). 

Table 1 shows the coded CT aspects and our working definitions, which are mostly based 

on the definitions given in Shute et al. (2017), as Kallia et al. (2021) did not provide a 

thorough definition. 

Considering that modelling is itself a complex process and our research is situated in the 

context of mathematical modelling, the aspect of modelling in Table 1 was discussed and a 

similar constraint as in Villa-Ochoa et al. (2022) was applied. The aspect of modelling was 

reduced to just the formulation of a model, be it a mathematical model or a computational 

model like a simulation. 
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Table 1. CT aspects observed in the modelling project 

CT aspect Definition 

Data collection (DC) Collecting or generating data 

Data representation 

(DR) 
Changing the representation of data 

Data analysis (DA) Analysing data 

Pattern Recognition 

(PR) 

Identification of and search for underlying structures in data, systems or the 

problem itself 

Abstraction (AB) Identification of the most important information of a system or problem  

Decomposition (DE) 
Decompose a problem into subproblems  

and solving the subproblems to inform a solution of the original problem 

Algorithms (AL) Usage and design of algorithms, as well as reflecting on the usage of them 

Automation (AU) Automating a solution 

Generalisation (GE) 
Generalising from special cases to the general problem  

and generalising solutions to be transferable to other problems and contexts 

Modelling (MO) Formulation of a Model of a system, problem or process 

Evaluation (EV) Evaluating solutions and strategies 

Debugging (DB) 
(Systematic) identification of errors (or error sources)  

and strategies to fix them 

 

Besides the given CT aspects, we also looked for instances of the CT definition given by 

Cuny et al. (2010, as cited in Wing, 2010). This means scenarios in which the formulation of 

problems or solutions with an external agent (not necessarily a machine) in mind was 

present in some way. Furthermore, we also looked into which of the processes depicted in 

Figure 1 and Figure 2 were observable during a week of modelling. 

Student groups and modelling problems 

Seven modelling problems were offered, of which five were proposed by the students and 

two were presented by the researchers.  

In the end, group 1 (five male students from grade 9) chose the problem of predicting 

the winner of the 2024 UEFA European Championship. Group 2 (five female students, two 

from grade 10 and three from grade 9) decided to analyse the game “Dobble”, sometimes 

also called “Spot it”, by the game publisher Asmodee. There are 55 cards in this game, each 

with 8 symbols on them, where two different cards are matched by exactly one symbol. The 

goal is to spot the matching symbol on two cards. As such, not all cards are matched with 

the exact same symbol. The group focused on the mathematics behind designing those 

cards. This was the only group that changed their modelling problem halfway through in 
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consultation with the teacher. Their second problem regarded the modelling of a certain 

type of throw in the game “Boules”2, where you try to throw a ball as close as possible to a 

target ball while keeping the balls of your opponents away from the target. Group 3 (four 

male students, one from grade 11, one from grade 10, two from grade 9) searched for an 

optimal strategy to play the boardgame “Shut-The-Box”. The version presented to the 

students has ten tiles numbered from 1 to 10. The task as a player is to throw two six-sided 

dice and add the numbers of both. After this, the player has to eliminate tiles in such a way 

(a combination of tiles or a single one), that the sum of the eliminated tiles matches the sum 

of the dice. If a player has no combination of tiles left to match the dice, the game is finished. 

When playing with multiple people, different evaluation systems can be considered to 

determine the winner, for example trying to stay as long as possible in the game or having 

the least number of tiles left in the end. 

Results 

In the following section, we will report on the modelling process of the three groups during 

the week. We will highlight the different CT aspects in the modelling process of each group 

as well as the problems the students had, that relate to those CT aspects. 

Predicting the winner of the European Championship (EC) 

The group predicting the winner of the UEFA EC 2024 started by researching the schedule 

of the matches. Two of the students looked at the outcome of past games, while the rest tried 

to compare data like the number of own goals or ball possession. 

However, the group showed problems in selecting a first small set of the most relevant 

data. This was especially observable when the group started to research the grass quality of 

the playing field in the then upcoming game of Spain vs. Germany. When asked about the 

search for this data by researcher R1, a student answered: “We are simply collecting every-

thing and then we see if we can recognize something to predict the game.” 

This reflects the CT aspects of data collection, data analysis, abstraction and pattern 

recognition. The group is collecting data on the played matches with the goal of analysing 

them for any underlying patterns. Regarding the aspect of abstraction, they seem to fail in 

reducing the amount of data to a subset of the most relevant information. 

At some point, the group also searched online for a “program to create EC predictions”, 

which led them to a tutorial for creating predictions in Excel, which they quickly rejected. 

This could also be interpreted as a slight manifestation of the aspect of automation as the 

group tried to find a (already existing) way to automatically solve the given problem. 

The problem of reducing the complexity of the given data could also be the reason why 

the group abandoned their online search for data during the first day and decided to do a 

survey at their school. The participants of the survey provided demographic information, 
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their prediction of the outcome Spain vs. Germany and their guess of the tournament cham-

pion. The participants were also asked to rate their expertise on a four-point scale. The scale 

here can also be interpreted as a first modelling decision. After prompts by the supervisors, 

they also did a second survey on the matches of Turkey against Austria and Romania against 

Netherlands as those matches were in the evening of the first day of the project week. 

The data from the surveys was collected in Excel. The group worked in the CT aspect of 

data representation when trying to create a diagram of the data following an online tutorial. 

Researcher R1 asked what they wanted to plot and how, so the group started to discuss the 

type of diagram needed for each column in the data set. One student prompted to plot 

everything as a line chart, while another argued for a bar chart with the guesses for the 

winner of the upcoming match. 

When the resulting chart didn’t match their expectation, they followed the tutorial 

multiple times but couldn’t identify the error. They then turned to sample data, which was 

just a table with two columns and some numbers, to experiment with the chart types. This 

was one of the instances where we saw the aspect of debugging being highlighted as the 

group showed some form of strategy to identify the error by examining the tutorial again 

and using another data set to test. 

As the group wasn’t able to use the data from the surveys to their satisfaction, they went 

back to the data search from the beginning after some discussion with the researchers and 

teachers. They started identifying a small set of properties they wanted to use for their 

predictions. 

They defined a function 𝑦(𝑥, 𝑎, 𝑏) = 15 ⋅ 𝑥 ⋅ 𝑎 ⋅ 𝑏 to determine the winner of a match or 

rather a scoring of each team, where 𝑥 is the performance of the team, 𝑎 is the market value 

of the squad in millions divided by ten and 𝑏 is the number of fans in thousands. Further-

more, they drafted a first calculation of the performance with 𝑥 = 𝑚 + 𝑡 + 𝑝 with 𝑚 being 

the number of wins in the tournament so far, 𝑡 being the difference in goals in the tour-

nament, and 𝑝 being the power-ranking at the start of the tournament. Figure 3 shows the 

values with this model for some of the teams in the tournament. 

As this is a first mathematical model for predictions by reducing the amount of data to a 

small, relevant subset, this clearly can be categorized under the CT aspects of modelling and 

abstraction. 

We also observed a wish for automation again, when one of the students tried to use 

ChatGPT1 as a calculator by explaining their evaluation scheme and prompting it to calculate 

the scorings of the EC pairings. As he didn’t specify the year, ChatGPT responded with the 

wrong matches and the student used multiple prompts to steer the AI to a useful response. 

This could also be interpreted as debugging again. 
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Figure 3. Rating of the different teams according to the model of the students. From left to 
right: Spain, Germany, Austria, Turkey, Netherlands (N), Romania (R), Germany again (De) and 

Denmark (Den) 

The same student (S) then discussed the model with the supervisors and came up with a 

weighting for the calculation of the performance, which is also discussed by researcher R2 

with the rest of the group later on: 

S:  We calculate the performance as the number of games won in the 
tournament divided by the total number of games. We weight that 
by 2, add the goal difference and divide that by 2. And the power 
ranking times 5. 

R2:  What values did you choose that don’t come from the data? 
S: Times 2, divided by 2 and times 5. 
R2: And I would now recommend using the computer if we want 

to test this with all the games. Then you can quickly change 2, 
2 and 5 and everything adjusts. Have you ever worked with 
Excel? 

S:  No, we don’t know Excel. 

This transcript shows, that the students didn’t come up with the idea of using the 

computer themselves as they also weren’t confident in working with it besides trying to 

create some charts. 

After that external input, the group started to build an Excel sheet with support of 

researcher R2 to evaluate their weightings for the performance. They collected the 

necessary data from various sources they found online and also changed the modelling of 

the function 𝑦(𝑥, 𝑎, 𝑏) to be a weighted sum of the inputs instead of a product. The re-

searcher assisted in the technical difficulties with Excel, like cell dependencies, while giving 

small inputs like “What data do we need for your formula?”. 

After successfully implementing the Excel sheet, they used the results of the matches 

from all rounds up to that day to adapt their weights. They changed the weighting in the 

performance formula as well as in the overarching formula to fit most of the matches, but 

not all of them. One of the falsely predicted games was Turkey versus Austria, but after 
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discussion with the group and the teacher, they declared that the winner of that game 

seemed to be surprising and so a falsely predicted match would reflect this. 

With this, the students went from a mathematical model to a digital representation of the 

model to alter the weights and compare them to real data. Although this was started by a 

prompt from researcher R2, this can be seen as an instance, where CT following the defini-

tion by Cuny et al. (2010, as cited in Wing, 2010) would benefit the group as they had to 

transfer their mathematical model to a computer model. This also addresses the aspect of 

automation again. With their way of fitting the weights as well as the discussion about the 

correctness of the prediction and implications for the real situation the CT aspect of 

evaluation is also imminent. 

Dobble 

The students started off by playing the game to explore the context. To solve the problem of 

understanding the design of the cards in the game Dobble, two of the students (A and B) 

explained their plan to researcher R1: 

R1: What are you doing right now? 
A: We’re collecting data, that is, how often which picture occurs 

and then hope to, um, recognize patterns. 
B: And then we want to simplify how much you need for 10 cards. 
A: Yes, so collecting data, recognizing patterns and then simplifying. 

The planning of the students already contained the CT aspects of pattern recognition, 

data collection, and data analysis. But the idea to simplify the problem and look at a special 

case was debated during the coding process, as this case of specialisation wasn’t really 

present in the CT frameworks and it didn’t really fit the working definition of abstraction. 

We recognised it as a preparing step for generalisation as the analysis of the special cases 

will eventually lead to generalising the structure. 

The group counted the occurrences of symbols on the 55 playing cards and represented 

that data in tables, discovering a total of 57 different symbols. To analyse how the cards 

were designed and to see if 57 was the lowest possible number of symbols, they continued 

their plan and looked at the special cases of two, three and four symbols per card. Figure 4 

shows the results for 3 symbols per card in two different representations used by the 

students. 

For the construction itself, they didn’t specify constraints, which would also allow one 

symbol to be matched across all cards. This wouldn’t make for a good game, so we assumed 

that they followed the basic idea of the game and tried to evenly distribute the matched 

symbols, that is, Symbol A is matched on the same number of cards as Symbol B. 
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The students first created a list with cards for three symbols per card and then 

rearranged them into a matrix scheme as seen in Figure 4, which aligns the cards that match 

on the first symbol in columns except for the first card ABC.  

 

Figure 4. On the left are the seven cards the students found for the case of three symbols per 
card using the letters A to G as symbols. On the right is a graph representation that the 

students used when analysing the structure 

They started off with ABC and then added cards that shared the symbol A but weren’t 

allowed to share any other symbols, introducing the missing letters D to G. They didn’t 

specify their constraints and couldn’t explain, why they didn’t continue this scheme with A 

past the letters F and G. The rest of the columns have the same idea – to match with the first 

card in only the symbol B or C respectively. For the first row, they kept D as the second letter 

and chose the remaining one in such a way that it “would fit”. 

They created a similar matrix for two symbols per card and then generalized the idea to 

𝑦 symbols per card. As they recognized that they have 𝑦 columns but only 𝑦 − 1 rows, this 

led to the general matrix scheme in Figure 5 and the formula 𝑥 = 𝑦 ⋅ (𝑦 − 1) + 1 with 𝑥 

being the total number of symbols needed as well as the total number of cards creatable. 

 

Figure 5. The general matrix structure that the students assumed the cards have for 𝑦 being 
the number of symbols per card and 𝑥 being the total number of cards 
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They validated their scheme with 𝑦 = 4 and then with 𝑦 = 8 for the original Dobble 

cards. They recognized that their formula would result in a total number of 57 cards instead 

of the given 55 cards. To find the two seemingly missing cards, they went through their table 

of symbol occurrences on the 55 cards and counted each symbol to find the under-

represented symbols, revealing once again their implicit constrain of an even distribution 

of symbols across cards. They then constructed the two missing cards shown in Figure 6 

and verified their correctness once again with their table. They recognized an error in the 

two cards as they didn’t have a common symbol and used the table again to determine the 

missing symbol on the left card. 

 

Figure 6. The two cards “missing” from Dobble with a small error. On the left side there is a 
snowman symbol missing. 

After this, researcher R1 asked them how they created the cards in the matrix or how 

one could create the cards for other values of 𝑦. As hinted, the group explained their creation 

of cards formally for the first steps (choosing the matrix form and filling the columns with 

matching first symbols), but then explained that they chose the rest of the symbols “so that 

they fit”.  

To answer the question of the researcher regarding a recipe for creating cards, they 

created the cards for 𝑦 = 4 and tried to recognize patterns in their way of finding fitting 

symbols. However, this led to identifying some sort of diagonal patterns, which they weren’t 

able to interpret anymore. As they lost the motivation for the game, they consulted with the 

teacher and continued with modelling Boules. 

This process showed multiple different CT aspects. The group used generalisation when 

creating their formula as a mathematical model from the analysed special cases. They tried 

formulating an algorithm to create cards with a fixed number of symbols by recognising 

patterns in their way of creating those cards. They failed, however, to provide a clear 

instruction for others to create those cards, addressing the main idea of CT again. 
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Boules 

After Dobble, the group focused on modelling a throw in a game of Boules in the last one 

and a half days of the project week.  

From video tutorials, they found a throw that lands a few centimetres before an oppo-

nent’s ball to push it away and roll a bit further. From that video, they determined the ball 

to start at a height of 1 m and set the target (the opponent’s ball) to be at a distance of 12 m.  

The teacher T gave them the hint to use a parabola as a fitting model, and as they wanted 

the ball to land 20 to 30 cm before the target, they modelled the throw as a parabola passing 

through the points (0,1) and (11.7,0). They then discussed that they were somehow missing 

the second root of the function to determine the whole function equation. This means they 

recognized the underdetermined nature of their problem. 

Instead of focusing on their original model, one of the students’ fathers gave her a 

physical model for the horizontal throw to use in the modelling at the end of the third day 

of the week. Her father told her that a non-horizontal throw would need knowledge of sine 

and cosine, which she didn’t have, and so a horizontal throw should suffice.  

They used the equation 𝑠𝑦 =
g

2
⋅ (𝑠𝑥 𝑣𝑥)⁄ 2

 with 𝑔 = 9.81 m s⁄ , 𝑠𝑦 as the height, 𝑠𝑥 as the 

distance and 𝑣𝑥 as the speed in the 𝑥-direction. They solved for 𝑣𝑥 and then determined the 

time 𝑡 needed for the throw. With the points (0,1) and (11.7,0) from before they determined 

that the player would have to throw with an initial speed of 23.91 m s⁄ . 

Researcher R1 asked the students to convert the result into kilometres per hour, 

resulting in around 86 km h⁄ . This surprised the students and the supervisors and promp-

ted a discussion about the correctness of the results. They then calculated the speed for a 

distance of 9 m, resulting in over 60 km h⁄ . Regarding the seemingly high velocities one of 

the students (A) discussed this with researcher R1. 

A: But the curve is realistic! 
R1: Yes, but for the distance you have to throw with a lot of 

momentum. That’s why you throw an arc. 
A: Makes sense. 
R1: You can test your own throw and measure the speed at which you 

threw it. Then you’ll know how realistic or unrealistic 80 km/h is. 

After this, the students went to measure their own throw. They tested if they could throw 

the regarded distance while trying to maintain a horizontal throw. As they didn’t record the 

throws, they couldn’t guarantee their throws to be truly horizontal, but concluded that the 

results might be achievable. 

Besides the modelling aspect, the discussion within the group and with the researcher 

showed the CT aspect of evaluation and partly debugging. They transferred the results from 

the mathematical modelling into the original context and evaluated the meaningfulness of 

the results. As the results seemed to be faulty, they tried to identify possible errors after 

being prompted to do so by researcher R1. 
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Shut-The-Box 

The group that searched an optimal strategy for Shut-The-Box started off by playing the 

game to explore the context. After some rounds of playing, they drafted four initial strategies 

and each student followed one of them. 

1. Student A may only flip combinations (so if a 9 is rolled, A may only flip 4 and 5 or 

1,2,6, for example, but not the 9 as a single number). 

2. Student B may only flip over the sum (a single tile) 

3. Student C tries to keep the lowest tiles (1,2,3) as long as possible 

4. Student D must alternately choose a combination or flip over the sum (alternately 

more than one tile or exactly one tile) 

The student who can’t follow his strategy anymore – even if there would be another legal 

move – looses. They played ten games looking which strategy allows them to play the most 

rounds and another ten games to see which strategy allowed them to have the lowest sum 

of remaining tiles. Based on this data, student B “survived” the longest, while student D had 

the lowest mean score regarding remaining tiles.  

They chose the strategy of student D as a first candidate for an optimal strategy and 

played a game with that strategy against the teacher. After losing that game, they thought 

about abandoning the strategy again. The teacher then reminded them, that a single game 

might not be good evidence for their strategy not working properly. 

This first part of their modelling process highlights a lot of different CT aspects. The 

formulation of strategies can be seen as an algorithm, that the students followed while 

playing and as such also addresses the basic idea of CT. The data collection during playing 

led them through analysis for picking a strategy as a candidate to be evaluated in the real 

context, that is, playing a game against an unknown or random opponent. 

A next strategy that the group tried was based on an evaluation of the importance of 

some tiles. They looked at what tiles can be used in the most combinations or rather what 

tiles they deemed useful. It couldn’t be observed if that heuristic was already based on 

concrete calculations of probabilities or rather experience from playing as this strategy was 

fostered after the first project day. In either case, it can be argued that this was an instance 

of pattern recognition. Their strategy was to preferably flip the tiles 10, 9 and 8, then the 

tiles 1, 6 and 7 and keep the tiles 2, 3, 4, 5 as long as possible, although they didn’t specify 

how to act if combinations contained tiles of different categories. 

This new strategy was than evaluated against the trainee teacher. One of the students 

played multiple games against the teacher and conferred with another student after each 

roll what to flip. That second student had notes on his sheet that the first one looked at to 

determine his next move. This was another prominent example of the definition of CT by 
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Cuny et al. (2010 as cited in Wing, 2010), as one of the students acted as the external agent 

that only executes the strategy that the other student formulated for him. 

At some point the trainee teacher prompted the group in the direction of tree diagrams: 

“You have to draw the paths. See what you can do after rolling the dice.” This led the group 

to work on a tree diagram of the game to determine the optimal choices for each roll. 

The group proceeded to go through every possible dice roll in the first round and looked 

at the possible combinations of tiles (including flipping a single tile). They evaluated those 

paths by the probability to lose with the next dice roll. For example, if one would role a 4 in 

the first round, the possible combinations would be 1 and 3 or 4. Flipping the 1 and 3 would 

mean that the game would be over if the second dice roll would be a 3 as this couldn’t be 

represented anymore, making the probability to lose be equal to 2 36⁄ . 

For each dice roll, they chose the minimal path regarding that probability or allowed 

multiple ones if they were equally good. The results for their strategy can be seen in Table 

2. They continued to calculate the second level of their implicit probability tree diagram by 

ignoring suboptimal paths on the first level and calculated the same loss probability for the 

remaining paths in dependence of the rolls on the first level. This resulted in the matrix 

shown in Figure 7. 

Table 2. Optimal choices (e.g., tiles to flip) for the first round in Shut-The-Box 

Dice Roll 2 3 4 5 6 7 8 9 10 11 12 

Optimal Choice 2 3 4 5 6 7 8 9 10 1+10 5+7 

 

Figure 7. Optimal choices for the second round of Shut-The-Box. To the left is the dice roll in 
the first round. The positions after the equal sign are meant to represent the roll in the second 
round, e.g., first position means a 2 was rolled in the second round, last position means a 12. 
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During the work for the strategy of the second round, researcher R1 together with the 

trainee teacher TT asked students A and B what their plan for the third and following rounds 

of Shut-The-Box was. 

R1: And then you’ll do the third branch? 
TT: No, no, that would be too much... wouldn’t it? 
A: Well, we want a complete strategy. 
B: We can continue with an old strategy afterwards. 
TT: Yes, and that should already be improved by the first two rounds 

now. 

The input of student B was then taken and they combined the probability tree for the 

first two rounds with the heuristic strategy of flipping 6 through 10 and 1 first if possible 

after the second round. They evaluated this strategy first against researcher R1 before 

deciding they would need a truly random opponent. The trainee teacher TT then started to 

write down all possible tile combinations for all dice rolls, so the students could simulate a 

random opponent with a random number generator. From 100 played games their strategy 

only lost in 3 games and 17 ended in a draw.  

The process for the final strategy was again very rich in CT aspects. Only looking at the 

first level and trying to optimize it, greatly depicts decomposition as a CT aspect, because 

they identified the decisions in each round to be subproblems of the whole strategy and 

used those subproblems to inform the overall strategy. Pruning certain paths in this process 

that aren’t optimal for having a higher loss probability does not only save time in computing 

the whole probability, but also depicts the aspect of abstraction again in reducing the 

complexity of the (calculation) problem. The need for and the simulation of a random 

opponent were not only part of the evaluation process but can – in conjunction with the 

evaluation over a hundred games, the termination criterion when the game has to end, and 

the more or less precise formulation of a strategy – be interpreted as a form of a compu-

tational model. 

Discussion and conclusions 

This study showed, that the CT aspects listed in Table 1 can be observed during modelling 

projects to a greater or lesser extent. Furthermore, we identified opportunities, where 

fostering CT could benefit the mathematical modelling. 

Regarding our first research question, we identified different CT aspects for each project 

as shown in Table 3. As the examples given by Ang (2021) suggested, the observed CT 

aspects seemed to depend on the type of modelling project For example, the aspect of 

decomposition was only observed in the Shut-The-Box project, while generalisation was 

only observed with the Dobble group. 
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Table 3. Identified CT aspects in the modelling projects. For abbreviations see Table 1 

 DC DR DA PR AB DE AL AU GE MO EV DB 

Predicting the 

EC Winner 

X X X X X   (X)  X X X 

Dobble X X X X   X  X  X  

Boule          X X X 

Shut-The-Box X  X X X X X    X  

The prediction of the EC 2024 champion demanded mostly constructing a prediction 

model based on available data on the matter and can therefore be compared to the “from 

data to model” example by Ang (2021). Consequently, the students showed mostly aspects 

of working with data and tried to use pattern recognition to derive a model.  

Shut-The-Box as a project, on the other hand, was more focused on understanding the 

game itself and analysing each round to derive an optimal strategy, similar to the “from 

process to model” example by Ang (2021). Although the project allowed for data collection 

and analysis, it lends itself more into problem decomposition (by dissecting the game’s 

individual rounds) as well as algorithms and the formulation of the solution for an external 

agent by providing an optimal strategy. 

Compared to the results of Villa-Ochoa et al. (2022), the observed modelling projects 

weren’t created with a focus on digital tools, and in fact, the groups working on Dobble and 

Shut-The-Box worked unplugged most of the time. As mathematical modelling is itself a 

problem-solving process, we can also compare this to the framework of Kalelioğlu et al. 

(2016), who understand CT to also be a problem-solving process and associate the CT 

aspects from Table 1 with different steps in a problem-solving process. Although some 

prompts by the researchers and teachers led to a stronger focus on certain aspects, we thus 

conclude that mathematical modelling and CT as problem-solving process are very similar 

in nature and share a lot of common aspects. 

To address our second research question, the observation also revealed opportunities 

for CT to support mathematical modelling. 

Consider the first group that struggled with selecting relevant data for the predictions of 

the EC winner. This indicates a need for abstraction (in the sense of identifying relevant infor-

mation) to reduce the complexity of the data. The second group struggled with formulating 

their scheme of generating cards in a way that the researchers and teachers could reproduce 

it, which directly addresses the formulation of solutions for external agents. Furthermore, the 

third group could have benefited from automation for a lot of their work (simulating the 

strategy a hundred times, calculating the paths in the decision tree). These three examples 

can be seen as possible ways for CT to positively influence the mathematical modelling. 
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Instead of common aspects, that CT could support, we can also focus on the differences 

recognized between the mathematical modelling process and the CT aspects. We recognized 

some sort of specialisation process in the Dobble group as a preparing step for generali-

sation, that didn’t fit any aspect. The examination of special cases is a classic mathematical 

problem-solving strategy (Schoenfeld, 1987) and wasn’t present in the reviewed CT frame-

works. This might be a unique aspect of mathematical problem-solving but provides an 

opportunity to apply generalisation and pattern recognition and could help foster CT in that 

matter. 

On the other hand we can focus on the CT definition by Cuny et al. (2010, as cited in Wing, 

2010). Fostering CT in the sense of formulating solutions for external agents could not only 

help in regards of modelling with digital tools and constructing a digital model, but also 

allow for a more product-oriented modelling. 

Lastly, we also want to highlight the aspect of debugging as a way for CT to support 

mathematical modelling. We observed instances where a thorough systematic error 

identification is beneficial, for example when the modelled throw for boule yielded a 

surprisingly high velocity and the students tried to identify possible errors. As Weintrop et 

al. (2016) recognized, the practices of trouble shooting and debugging are important in the 

STEM fields, where researchers encounter unexpected outcomes frequently. For mathe-

matical modelling, evaluation of a solution in the real context is an essential part and evalua-

tion was present in all projects (see Table 3). The students may be confronted with 

problems when applying mathematical solutions to the reality, revealing an opportunity to 

benefit from debugging or troubleshooting strategies. 

This study aims to add to the empirical research on the interconnection of mathematical 

modelling and CT, but only provided observations on CT aspects in one modelling project 

during a school week. Further research is needed to expand on how CT is present during 

mathematical modelling, the impact of CT on the modelling process and how modelling 

projects can be designed to foster CT, comparing, for example, product-orientation and the 

deployment of digital tools or programming. 

Notes 

1 The group used the free version of ChatGPT available under https://chatgpt.com/ in the version of 
the first week of July 2024. 
2 Although the students never clarified it, it can be assumed that they focused on Pétanque 
(https://en.wikipedia.org/wiki/Pétanque). 
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