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Abstract. The recent introduction of computational thinking in mathematics curricula requires 

investment in the design of teaching resources that promote an integrated learning of computational 

thinking and mathematics in real classroom settings. Developed in the context of a teaching 

experiment, this exploratory study focuses on discussing how one task that integrates computational 

thinking into the study of affine function in the 8th grade contributes to the development of students’ 

computational thinking practices and students’ functional thinking. A qualitative methodology was 

adopted, with data collected through participant observation from two classes, supported by audio 

and video recordings, as well as students’ written work. The targeted computational thinking 

practices were abstraction, decomposition, pattern recognition, analysis and definition of algorithms, 

and development of habits for debugging and optimizing processes. Functional thinking analysis 

focused on the function representations, contextual and symbolic generalization, and mathematical 

modelling. The results show that computational thinking practices and dimensions of functional 

thinking were integrated during students’ task resolution, highlighting the important role of the 
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task’s context and the different types of representation, namely the coded representation facilitated 

by Scratch, in supporting students moving from concrete examples to more general situations. 

Keywords: computational thinking; functional thinking; affine function; mathematics; middle school. 

Resumo. A recente introdução do pensamento computacional nos currículos de matemática exige 

investimento no design de recursos que promovam uma aprendizagem integrada do pensamento 

computacional e da matemática na sala de aula. Este estudo exploratório, realizado no contexto de 

uma experiência de ensino, discute como uma tarefa que integra o pensamento computacional no 

estudo de funções afins no 8.º ano contribui para o desenvolvimento das práticas de pensamento 

computacional e do pensamento funcional dos alunos. Adotou-se uma metodologia qualitativa, com 

dados recolhidos através de observação participante em duas turmas, com áudio e vídeo gravação, e 

dos trabalhos escritos dos alunos. As práticas de pensamento computacional visadas foram: 

abstração, decomposição, reconhecimento de padrões, análise e definição de algoritmos e o desen-

volvimento de hábitos de depuração e otimização dos processos. A análise sobre o pensamento fun-

cional focou-se nas representações de funções, generalização contextual e simbólica e modelação 

matemática. Os resultados mostram que as práticas de pensamento computacional e as dimensões 

do pensamento funcional foram integradas durante a resolução da tarefa pelos alunos, destacando-

se o importante papel do contexto da tarefa e dos diferentes tipos de representação, especialmente, 

a representação codificada facilitada pelo Scratch, para apoiar os alunos a progredirem de exemplos 

concretos para situações mais gerais. 

Palavras-chave: pensamento computacional; pensamento funcional; função afim; matemática; 3.º 

ciclo. 

Introduction  

The emergence of the term “computational thinking” in education (Wing, 2006) sparked a 

global discussion regarding its conceptualization and integration in education in general 

(Caeli & Yadav, 2020; Román-González et al., 2017) and specifically in mathematics teaching 

(Barcelos et al., 2018; Chan et al., 2023; Ye et al., 2023). Beyond the recognized value of 

computational thinking as a 21st century competence for young people and essential for 

prospering in the world (Caeli & Yadav, 2020), its potential to enhance mathematics learn-

ing has been receiving growing attention from researchers (Chan et al., 2023). Namely, 

Weintrop et al. (2016) claim that computational thinking may offer students a more realistic 

insight into mathematics, and Ye et al. (2023) show that computational thinking based 

mathematical tasks may support students in developing novel mathematical knowledge, 

and not only in its application. Recognizing the importance of developing computational 

thinking in students, various countries have integrated it into their curricula in different 

ways over the past few years, either through a specific discipline or in a cross-disciplinary 

manner (Bråting & Kilhamn, 2021). Following this trend, the Portuguese mathematics cur-

riculum for basic education (Canavarro et al., 2021) has introduced computational thinking 
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as one of the six transversal mathematical skills to be promoted. However, significant ques-

tions have been raised about how to promote it alongside the mathematical topics in the 

curriculum (Israel & Lash, 2020). One major concern is how to effectively teach for compu-

tational thinking development as well as for mathematics learning, in an articulated way (Ye 

et al. 2023), as research shows that quite often teaching in that context prioritizes compu-

tational thinking outcomes over mathematics learning (Chan et al., 2023). The design 

features of computational thinking based mathematical tasks, namely if they necessarily 

must imply the use technology (Caeli & Yadav, 2020), and their nature and level of structure 

(Cui et al., 2023), are also part of the debate concerning the introduction of computational 

thinking in mathematics classrooms. 

Among the studies that establish a connection between computational thinking and the 

teaching and learning of mathematical topics, functions are notably underrepresented 

(Hickmott et al., 2018). Thus, this exploratory study, part of a teaching experiment, aims to 

contribute to fill a gap in the literature regarding the limited availability of educational 

resources that promote the integrated development of computational thinking and mathe-

matics learning, specifically concerning the teaching of affine function in the 8th grade, to 

promote students’ functional thinking (Pitta-Pantazi et al., 2020; Smith, 2008). The teaching 

experiment was conceived to explore how to integrate computational thinking in the regu-

lar teaching practice in the classroom, conformed with the actual time restrictions for cover-

ing the curriculum and the structure of classes daily timetable, and thus providing clues 

about the feasibility of promoting computational thinking as a new curricular goal for basic 

education. Hence, the study inherently reflects the complexity of real-world teaching con-

ditions and assumes the importance to guarantee the research ecological validity (Cobb et 

al., 2003), particularly when curricular innovations are proposed to schools, such as it is the 

case of the introduction of computational thinking in Portuguese mathematics curriculum. 

Based on the above objectives, the following research question is addressed by this 

study: How does a task that integrates computational thinking into the study of affine 

function in 8th grade classes contribute to students’ practices of computational thinking and 

students’ functional thinking? 

Theoretical framework 

Computational thinking in mathematics education 

Computational thinking was considered by Wing (2006) as a fundamental skill at the same 

level as reading, writing, and arithmetic, consistently focused on the problem-solving 

process. Building on the author's ideas, which revisit some of Papert’s contributions from 

the 1980s, the development of computational thinking has come to occupy a prominent 

place in some studies on mathematics education in which researchers are concerned with 
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the integration of computational thinking in mathematics teaching (Barcelos et al., 2018; 

Chan et al., 2023; Ye et al., 2023).  

In this study, computational thinking is characterized as a way of thinking when faced 

with problematic situations that involves the enactment of practices such as those outlined 

in the Portuguese mathematics curriculum for basic education (Canavarro et al., 2021), 

namely: (i) abstraction, which involves extracting the essential information from a problem; 

(ii) decomposition, which is based on simplifying a problem by breaking it down into more 

manageable parts; (iii) pattern recognition, which implies recognizing or identifying 

patterns and regularities when solving one problem and applying them to similar problems; 

(iv) analysis and definition of algorithms, which involve solving a problem through a step-

by-step procedure, often resorting to technology; and (v) development of debugging and 

process optimization habits, which encourages testing to identify and correct errors and 

subsequently refine a given solution. 

The characterization of computational thinking in education, especially when 

incorporated into mathematics, is of utmost importance and it has been the subject of many 

studies. In research we find reference to computational thinking practices in mathematics, 

as it is the case of the three studies presented in table 1. These authors agree regarding the 

notions of abstraction, decomposition and algorithmic thinking, three of the five practices 

mentioned in the Portuguese basic education mathematics curriculum (Canavarro et al., 

2021). Although less frequently mentioned, pattern recognition and debugging are also 

noted in research, with the latter practice being highlighted in studies based on literature 

reviews or that are, themselves, literature reviews (Kallia et al., 2021; Ye et al., 2023). 

Table 1. Examples from the literature on main practices of computational thinking 

Barr and Stephenson 

(2011) 
Kallia et al. (2021) Ye et al. (2023) 

Data collection, analysis, and 

representation 

Abstraction 

Decomposition 

Algorithms 

Testing and validation 

Simulation 

Automation 
 

Abstraction 

Decomposition 

Pattern recognition 

Algorithmic thinking 

Modelling 

Logical thinking 

Automation 

Generalization 

Evaluation of strategies 

and solutions 

Systemic thinking (decomposition, 

abstraction, and algorithmic thinking) 

Data practices (modelling and simulation) 

Reuse and remix 

Testing and debugging 
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Approaches to computational thinking in mathematics teaching 

According to Israel and Lash (2020), there are three types of teaching approaches regarding 

the level of integration of computational thinking and mathematics: (i) no integration, 

where mathematics or a computational thinking concept are taught isolated; (ii) partial 

integration, where computational thinking is used to reinforce a mathematics concept or 

vice versa; and (iii) full integration, where mathematics and computational thinking 

concepts are taught together. In this study, the authors concluded that fully integrated 

teaching was the least used by the teachers involved, who mentioned that this approach is 

more difficult for students due to the increased “cognitive load demands when teaching the 

CS/CT at the same time as the mathematics curriculum” (p. 374). However, in more recent 

studies it was found that partial integration is dominant, either with an intensive focus on 

computational thinking (Chan et al., 2023) or with a predominant focus on mathematical 

understanding, using computational thinking as a technique (Nordby et al., 2022).  

To understand how to outline pedagogical approaches (plugged and unplugged) that 

best promote the development of computational thinking, several investigations have been 

carried out. Regarding the unplugged approach, Bell and Vahrenhold (2018) state that it is 

used “to engage a variety of audiences with great ideas from computer science, without 

having to learn programming or even use a digital device” (p. 497). Several potentialities 

have been highlighted for this type of approach, namely, helping students to construct and 

outline their reasoning (Caeli & Yadav, 2020), allowing access to activities that promote 

computational thinking when electronic equipment is limited (Evaristo et al., 2022), help to 

ease fears of programming among teachers and students, and meaningfully engaging the 

latter with the big ideas of computer science (Bell & Vahrenhold, 2018). 

Despite the recognition of their importance, there is a certain consensus that unplugged 

approaches should not be implemented isolate but in connection with the use of technology 

(Bell & Vahrenhold, 2018). As such, plugged approaches emerge to complement unplugged 

ones, contributing to stimulating students’ thinking by using technology as a tool (Evaristo 

et al., 2022). 

In mathematics teaching, plugged approaches are mostly focused on programming and 

are recognized as a strong pedagogical approach to developing computational thinking, gi-

ven the importance of the cognitive aspects behind programming (Kallia et al., 2021). 

Scratch programming environment is one of the most common digital tools for exploring 

computational thinking with students and it is also suggested by the Portuguese basic 

education mathematics curriculum (Canavarro et al., 2021). By using a visual programming 

language (in blocks), this tool becomes very simple for students. However, other tools are 

also pointed out as having the potential for promoting computational thinking in conjunc-

tion with mathematics, such as spreadsheets, which are considered a “language” that uses 
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text-based code (Chan et al., 2021), or Sketchpad, regarded as a third programming lan-

guage that employs geometric objects instead of text or block-based code (Ye et al., 2023). 

Recognizing the importance of both approaches, Caeli and Yadav (2020) argue that to 

engage students, unplugged and plugged approaches should be combined. For instance, 

unplugged tasks may reinforce students’ understanding of certain programming concepts, 

such as in the study by Gomes et al. (2018) where the loop concept was identified as a 

difficulty in plugged activities. Therefore, it is pertinent to investigate what tasks can be 

created to combine these two approaches.   

Task design for computational thinking in mathematics   

Given the central role that tasks play in mathematics teaching (Kieran et al., 2015), they 

should be designed to engage students and to effectively enhance their mathematical 

understanding. When designing a task, we should consider the relevance of mathematics in 

daily life, through its application in other areas of knowledge or in everyday situations, 

allowing students to recognize the need to use the knowledge acquired in this subject to 

model real-world scenarios (Brennan & Resnick, 2012). Additionally, one of the main goals 

in school mathematics is to support students in developing conceptual understanding. 

Focusing on the design of mathematical tasks with that goal, Swan (2014) proposed four 

tasks genres, namely: (i) observing, classifying, and defining, involving the manipulation of 

mathematical objects, and creating and examples and non-examples; (ii) representing and 

translating mathematical concepts in their various representations; (iii) justifying and/or 

proving mathematical conjectures and procedures; and (iv) identifying and analysing 

structure within situations, including studying relationships between variables and com-

paring mathematical structures. These provide important elements that can be considered 

in tasks that target mathematical concepts from different topics. 

In recent years, the design of mathematical tasks has been extensively discussed by 

researchers and teachers (Kieran et al., 2015). However, since computational thinking is a 

relatively recent concept in mathematics curriculum, the pedagogical design of mathe-

matical tasks that address the dimensions of computational thinking has not been widely 

explored. Kotsopoulos et al. (2017) developed an initial pedagogical framework based on 

empirical data and rooted in Papert’s constructivist learning theory that considers four 

experiences for developing computational thinking: unplugged, tinkering, making, and 

remixing. These authors suggest that students should start with less demanding 

experiences in terms of understanding (unplugged and tinkering) and progress to more 

cognitively demanding ones (making and remixing). The authors also note that the first 

experience, unplugged, should be the initial approach to promote the development of 

computational thinking, as it introduces concepts without using computers. This approach 

requires less cognitive load and does not require knowledge of programming languages. In 
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the next experience, tinkering, students modify existing objects, analysing the implications 

of these changes on the results and correcting possible errors, with a focus on applying 

concepts and simulation. In the making experience, students solve problems by planning 

and selecting tools, as well as establishing connections between concepts. Finally, in the 

remixing experience, students modify an object to adapt it for a different purpose. 

Taking into consideration what one knows about ways to promote students' conceptual 

understanding in mathematics, there is a need of seeking how to combine these four experi-

ences for developing computational thinking in the design of tasks for supporting 

the development of different concepts in mathematics. 

Functional thinking 

Functional thinking is a form of generalization, associated with the exploration of sequences 

from the early years of schooling (Cabral et al., 2022). According to Smith (2008), functional 

thinking focuses on the relationship between two or more variables and on the evolutionary 

process from specific relationships to their generalization. Therefore, it is important to iden-

tify these relationships, represent them in various ways, and ultimately generalize them. 

According to the Portuguese basic education mathematics curriculum, the study of 

functions is explicitly introduced in the middle school, where it is associated with 

understanding variation, establishing relationships between quantities/magnitudes, ex-

pressing generalizations and representing them in various forms, and modelling (Canavarro 

et al., 2021). Specifically, in the 8th grade, the focus is on the study of affine function, 

concerning: their multiple representations (graphical, algebraic, and tabular) and the 

connections between them; the effect of varying their parameters; the possibility of making 

predictions; and the interpretation and modelling of real-world situations.  

Functional thinking has several dimensions, from which, within the scope of this study, 

we highlight the following: (i) generalization, (ii) representation of functions and their 

connections, and (iii) modelling. Generalization refers to extending reasoning beyond 

specific cases to converge on a general rule, which can be represented through natural 

language (use of words), syncopate language (a mix of symbols and natural language), or 

symbolic mathematical language (alphanumeric notation) (Cabral et al., 2022). Depending 

on how the rule is expressed, there are three types of generalization: factual, using specific 

cases; contextual, supported by the described context; and symbolic, using symbolic mathe-

matical language (Cabral et al., 2022; Radford, 2006). 

In the learning of functions, several authors highlight the importance of promoting 

different representations (Best & Bikner-Ahsbahs, 2017; Blanton & Kaput, 2011). Blanton 

and Kaput (2011) emphasize students’ understanding of multiple representations to 

express the relationships between quantities, as well as using these representations to 

interpret and predict the functions behaviour. Similarly, Best and Bikner-Ahsbahs (2017) 
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consider it essential to relate different representations of functions to ensure that learning 

is not fragmented. Recognizing the importance of multiple representations of functions, in 

this paper, we introduce a new category called coded representation, which can be presented 

through pseudocode or programming languages, such as Scratch, and can be associated with 

purely mathematical contexts or real-life situations.  

To promote functional thinking, mathematical modelling is also emphasized, as it 

involves translating a real-life situation into a mathematical model. This process helps 

recognizing the relevance of mathematics in various real-world contexts, as outlined in 

mathematics curriculum (Canavarro et al., 2021). According to Pitta-Pantazi et al. (2020), 

students must first interpret the context, identify the quantities involved and their 

relationships, and then represent them using the most appropriate mathematical model. 

Modelling is considered a cyclical process divided into seven steps: initial understanding of 

the real situation without context, simplification focusing on what is essential, identification 

of the mathematical model involved, mathematical manipulation of the model, inter-

pretation of the obtained mathematical results, validation of these results, and translation 

back to the initial real situation (Blum & Ferri, 2009). 

Developing functional thinking is not an easy endeavour, as it is noticeable in many 

secondary classes (Martins et al., 2023), therefore it is significant to provide students with 

tasks that challenge them to recognize and articulate structures and relationships.   

Methodology 

The study context and task selection 

The present study was carried out as part of a broader teaching experiment focused on tasks 

integrating computational thinking with topics related to functions, specifically affine 

function, literal equations, and systems of two first-degree equations with two variables 

(graphic solving). The teaching experiment was conducted by the first author, who teaches 

mathematics at a public secondary school in the Oeiras Municipality (Lisbon metropolitan 

area). The participants included 49 students aged 13 to 14 from two 8th grade classes. 

Following Chan et al. (2021), to avoid adding difficulties in learning mathematics when 

solving integration tasks, during the current school year, the teacher-researcher had intro-

duced the Scratch programming environment in her classes to reinforce content related to 

the topics of numbers and algebra. For this study, the first task of the teaching experiment, 

intitled “Natural Gas vs. Propane Gas” (Appendix) was selected. This task intended to intro-

duce students to the concept of the affine function, 𝑓(𝑥) = 𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ∈ ℝ, through the 

interpretation and modelling of a concrete situation related to different gas consumption 

plans in Portugal. As students were familiar with direct proportionality function from the 

previous year, the task takes that knowledge to introduce the students in the exploration of 
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the new concept, alongside with the intended computational thinking practices. By relying 

on this first task in the teaching experiment, this study allows us to analyse students’ 

functional thinking when they first contact with a new type of function in connection with 

the task’s characteristics. 

Data collection and analysis methods  

This study followed a qualitative methodology, and as such, the data collected were 

qualitative in nature and gathered in the natural classroom environment, focusing on the 

students’ reasoning during the completion of the selected task. Different data collection 

methods were employed, including participant observation, video recordings of the lessons, 

audio recordings of eight pairs of students, and the collection of students’ written solutions 

to the task. The pairs of students (four pairs from each class) were chosen to maximize the 

benefits of their interaction in solving the tasks, ensuring more comprehensive data.  

To gather empirical evidence on how students show the intended learning outcomes 

from the proposed task, this study focuses on analysing the students’ productions that 

represent the range of solutions from the target groups. These were complemented, when 

necessary, with data from the audio recordings of the pairs.  

The analysis framework focuses on (i) five practices of computational thinking—

abstraction, decomposition, pattern recognition, algorithm analysis and definition, and 

development of debugging and process optimization habits—and (ii) three dimensions of 

functional thinking—function representations, mathematical modelling, and contextual and 

symbolic generalizations—which are central aspects related to the intended learning 

outcomes of the task that is presented in the next section. 

The task for integrating computational thinking and functional thinking 

Design of the task 

For the design of the task, the specific objectives for learning functions outlined in the 

mathematics curriculum (Canavarro et al., 2021) were considered, as well as the guidelines 

on designing tasks related to mathematics learning (Swan, 2014) and the development of 

computational thinking (Kotsopoulos et al., 2017). Thus, the task was designed to achieve 

the goal of understanding of affine function and included aspects of the task’s genres for 

conceptual understanding pointed out by Swan (2014) and simultaneously it followed the 

pedagogical approach suggested by Kotsopoulos et al. (2017) to promote computational 

thinking. For the latter, this implies to start with unplugged tasks and then move on to 

modifying existing objects and validating these modifications. Next, students solve prob-

lems, requiring them to plan, select tools, and establish connections between concepts. 

Finally, students adapt what they have learned by applying it to a new problem situation. 
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Adapting the task design from Kotsopoulos et al. (2017) and following the illustration in 

Figure 1, the task is divided into four parts according to its level of difficulty. 

 

Figure 1. Task design sequence 

The construction of the task was also based on the teacher-researcher’s experience over 

20 years of teaching, which allowed her to develop knowledge regarding the design and 

implementation of mathematical tasks, both in mathematical and real-world contexts. 

Additionally, it drew on her previous experience in facilitating lessons for consolidating 

mathematical content using flowcharts and programming in Scratch and on the literature 

as previously explained. 

The task was intended to introduce the subtopic “affine function”, with the following 

learning objectives: to identify a direct proportionality function with a linear function; to 

interpret and model real-world situations using affine functions; and to recognize the affine 

function as a function of the type 𝑓(𝑥) = 𝑎𝑥 + 𝑏, with 𝑎, 𝑏 ∈ ℝ, and the linear function as a 

specific case of the affine function (Appendix).  

The first question, framed within the unplugged part of the task, aims student to analyse 

a situation that can be modelled by a linear function. In the first part, they are asked to 

explore an example of a direct proportionality situation using specific values of gas con-

sumption. The following part requires them to construct a flowchart that identifies the 

inputs/outputs related to the described situation and outlines the reasoning from the 

previous part in a more abstract context: the contextual algebraic generalization referred 

to by Radford (2006). In the final part, students are expected to advance to symbolic 

algebraic generalization (Radford, 2006), using the variables x and y to write an algebraic 

expression representing the described situation. 

In the first four items of the second question, related to the tinkering part of the task, 

students are expected to interpret situations modelled by a nonlinear affine function, make 

predictions, and correct errors. In the first two parts, students should interpret a pre-

written code, contextualize some of its instructions according to the given situation, and 

make a prediction about an output (image) resulting from a specific input (object). In item 

c), students are prompted to compare codes and identify errors, using, for example, the 

rules of mathematical operation priority to justify their reasoning. Item d) requires students 

Unplugged 

Introduction of 

concepts without the 

use of computers or 

programming 

Tinkering 

Modification of 

objects and 

correction of errors 

Making 

Solve problems, 

establish 

connections 

between concepts 

Remixing 

Adapt an object to 

be used for 

another purpose 
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to translate the situation using the variables x and y, arriving at the algebraic expression of 

a nonlinear affine function. 

The last three items of the second question, which pertain to the making part of the task, 

aim to address more challenging situations involving the nonlinear affine function and to 

establish connections between concepts. In item e), students are expected to determine an 

object corresponding to a given image, using, for example, reasoning with inverse 

operations or solving equations which were studied in previous years. Next, students 

should generalize their reasoning by completing lines of a code presented in the task and 

then build the program in Scratch to validate the obtained result.    

Finally, in the remixing part of the task, students are required to build, in a less guided 

manner, a program in Scratch to model a real-life situation involving percentages, which is 

associated with a direct proportionality function. In this part, after interpreting the 

described situation, students must outline a strategy to follow. 

In Table 2 we present the aspects of computational thinking and functional thinking 

targeted by each question of the task, according to the previously defined analysis 

framework, which is based on two dimensions: (i) the computational thinking practices 

mentioned in the Portuguese basic education mathematics curriculum (Canavarro et al., 

2021), namely: abstraction (AB), decomposition (DE), pattern recognition (PR), algorithm 

analysis and definition (AD), development of debugging habits and process optimization 

(DH); and (ii) dimensions of functional thinking, such as function representations (FR), 

mathematical modelling (MM), and contextual (CG) and symbolic (SG) generalizations.  

Table 2. Aspects of computational and functional thinking targeted by the task 

Group of 

Questions Question Computational thinking practices 
Dimensions of functional 

thinking 

G1 

1. a) AB 

CG, SG, FR 1. b) AD 

1. c) AD 

G2 

2. a) AB 

FR 
2. b) DH 

2. c) DH 

2. d) AD 

G3 

2.e) PR 

CG, FR 2. f) PR, AD 

2. g) DH 

G4 3. AB, DE, AD, DH MM; FR; CG 

 



 

204 A. Mateus, H. Oliveira, J. Piedade 

 

Quadrante 33(2) 193-222 

 

The task’s enactment in the classroom 

Adopting an exploratory teaching practice organized into four phases (Menezes et al., 

2015), the implementation of the task began with organizing student pairs and setting time 

limits for each part of the lesson. This was followed by the presentation and contex-

tualization of the task by the teacher-researcher, who ensured that students understood the 

objectives (5 minutes). Subsequently, the students worked on questions 1 and 2 of the task 

(70 minutes). Throughout the completion of the task, students received assistance from the 

teacher-researcher, who sought to clarify any questions that arose, posed questions to the 

students, and emphasized the importance of justifying their reasoning. However, the 

teacher-researcher did not interfere with their strategies or make corrections. Next, the 

teacher conducted a whole-group discussion from the students' strategies and solutions, 

encouraging the comparison of different approaches (15 minutes). Finally, based on the 

students’ work and to systematize the learning, a summary table was created where the 

conclusions regarding the identification of differences between a linear and a non-linear 

affine function, the algebraic expression of the function, and the determination of an object 

or an image of the function (10 minutes). In a subsequent class, question 3 of the task was 

presented (5 minutes), where the potential of programming in creating a gas/electricity bill 

was discussed. Finally, after the task was completed (35 minutes), the teacher-researcher 

requested students to share with the class the different strategies they developed (10 

minutes). 

Results 

The following subsections present the analysis of the students' task resolution. These are 

organized into four parts, according to the group of questions (G1 to G4). 

Group 1 

In the first question, all the selected student pairs were able to extract the essential 

information from the problem (AB), correctly interpreting how to relate the 33€ with the 

11 m³, although they used different strategies, as illustrated below. For example, pair TM 

likely drew connections with other types of situations solved in different contexts to 

determine the unit price per m³ (PR), using a simple proportion rule (Figure 2). Pair FJ 

(Figure 3) started by determining the price per m³, breaking down the problem into simpler 

parts (DE) using the rule of three to do so (PR). Pair GT (Figure 4) determined the price per 

m³ by dividing 33 by 11 and identified the result of this quotient as a unit price per m³, 

demonstrating an understanding of the constant in a direct proportionality situation (PR). 
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Figure 2. Solution to question 1.a by pair TM 

 

Figure 3. Solution to question 1.a by pair FJ 

 

Figure 4. Solution to question 1.a by pair GT 

Regarding the next question, most students were successful in the targeted compu-

tational thinking practice (AD). However, pair HD did not correctly identify the input data 

for the flowchart, using the concrete values from the previous question to try to complete it 

(Figure 5, left). Pair CA successfully outlined the construction of an algorithm to 

automatically determine the cost of gas (AD), correctly identifying the input data, the 

procedures to follow, and the output data. They explicitly represented these in the flowchart 

(Figure 5, centre) using natural language (FR), demonstrating the ability to generalize 

within the context of the task (CG). In the flowchart created by pair AC (Figure 5, right), 

although the meaning of the variables is not explicitly defined, the students show a 

successful sequenced of steps needed to determine the cost of gas (AD), and to generalize 

this procedure by using variables (SG).  

 

Figure 5. Solution to question 1.b by pairs HD (left), CA (centre), and AC (right) 

All the analysed pairs managed to write a correct algebraic expression (AD). The pair AC 

(Figure 6, left), despite not having identified the value of m³ in question 1.a, determined it 

in the current question and used it to generalize their reasoning (SG) and write an algebraic 
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expression (FR). The pair CA (Figure 6, centre), who had identified the fixed and variable 

values in the rule of three used in the first question, applied that reasoning to arrive at an 

algebraic expression (SG and FR). In addition to writing the algebraic expression, the pair 

GT tested it to confirm the results from the first question (DH) (Figure 6, right). 

 

Figure 6. Different algebraic expressions presented by pairs AC (left), CA (centre), and GT 
(right) 

In this first group of questions, the students, starting from the analysis of a concrete 

example of the described situation, were able to advance their reasoning to reach symbolic 

generalization by writing an algebraic expression of a linear function. 

Group 2  

In the first question of this group, the students were able to interpret the values presented 

in the coded representation (FR), associating their meaning with the context of the 

described situation (AB), as illustrated by group AC in Figure 7. In contrast, group FJ (Figure 

8) did not relate the two values to the real context mentioned, interpreting them in a mathe-

matical context and correctly identifying them as a fixed component and a variable 

component.   

 

Figure 7. Solution to Question 2.a by pair AC 

 

Figure 8. Solution to Question 2.a by pair FJ 

In question 2.b, in an initial resolution, pair CP did not consider the fixed tax in their 

reasoning and only after testing the program using the QR code were they able to identify 

and correct the error (DH), disregarding the initial result of 1.755, which only accounted for 

the variable component of the gas price (Figure 9). The remaining pairs correctly antici-

pated the results of the coded representation, identifying the input and output values and 

describing their reasoning similarly to what is illustrated by pair FJ (Figure 10). 
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Figure 9. Solution to question 2.b by pair CP 

 

Figure 10. Solution to question 2.b by pair FJ 

In question 2.c, all pairs provided a correct answer, accurately identifying and justifying 

the existing differences between the two blocks of code (DH). Group MM (Figure 11) 

demonstrates an understanding of the presented codes by explaining what each set of 

blocks does (DH). Pair HD (Figure 12) first converts the codes into symbolic language and 

then justifies their response by reinforcing their explanation using natural language in the 

context of the described situation (AB), showing proficiency in converting between different 

representations (FR). Going beyond the conversion of the code to symbolic language (SG), 

group CP (Figure 13) uses the distributive property of multiplication over addition to 

mathematically validate the difference between the two expressions (DH).  

 

Figure 11. Solution to question 2.c by pair MM 

 

Figure 12. Solution to question 2.c by pair HD 
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Figure 13. Solution to Question 2.c by pair CP 

In question 2.d, all pairs successfully elaborated a flowchart (FR), defining an algorithm 

where most of them correctly identified the input data, procedures, and output data (AD). This 

is evident from the geometric shapes used in the flowchart construction (parallelograms for 

input or output data and rectangles for procedures). Pair HD (Figure 14, left) identifies the input 

data in the flowchart as a question, using the context of the described situation, and associates 

it with the variable x. For the procedure, it indicates the calculations to be performed in a 

generalized way, using the variable x (SG), and mentions the output data as a response 

associated with the result of the previously performed procedure. In the solution by pair CA 

(Figure 14, centre), which is very similar to the previous pair, there is an important reference to 

the need to store the value of the variable 𝑥, although this is not identified in the flowchart as an 

input data. Pair TM (Figure 14, right) identifies the values 𝑥 as an input and 𝑦 as an output, 

contextualizing them in parallel with the described situation and mentions the calculation to be 

performed using the variable 𝑥 (SG).  

 

Figure 14. Solution to question 2.d by pairs HD (left), CA (centre), and TM (right) 
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In this second group of questions, the students managed to analyse a new way of 

representing a function, different from the usual representations, which we referred to as 

coded representation, contributing to the understanding of the concept of a non-linear affine 

function.  

Group 3 

In question 2.e, the pairs that arrived at the correct solution used the inverse operations 

reasoning, such as pair TM (Figure 15), recognizing similarities with other situations, such 

as determining term orders in sequences (PR). However, several students solved the 

question incorrectly, as was the case with pair CA, which attempted to use direct propor-

tionality reasoning without considering the fixed rates (Figure 16, left), or pair JF, which, 

identifying the need to use inverse operations, did so in the wrong order (Figure 16, right).  

 

Figure 15. Solution to question 2.d by pair TM 

 

Figure 16. Incorrect solutions to question 2.d by pairs CA (left) and JF (right) 

In question 2.f, most of the solutions presented by the students are generalizations of the 

correct or incorrect reasoning used in the previous question, allowing for the identification 

of input and output data and the calculations to be performed (AD). Pair GT (Figure 17) 

correctly and contextually identified the data that needed to be entered into the program, 

as well as the results to be obtained and how to determine them (CG), taking care to specify 

the corresponding units. Pair CA (Figure 18), using the incorrect reasoning from the 

previous question, demonstrated that they were able to transform the simple rule of three 

into a generalization, despite their answer being wrong. Contrary to what was expected, 

students in group AC (Figure 19), who had used the simple rule of three without considering 

the fixed rate in the previous question, were unable to directly translate the rule of three 

reasoning into code. Instead, these students used the context of the described situation to 

correctly solve this question, although they did not define the meaning of the variable x in 

their solution, which would prevent the program from working correctly (SG). 
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Figure 17. Solution of question 2.e by pair GT 

 

Figure 18. Solution of question 2.e by pair CA 

 

Figure 19. Solution of question 2.e by pair AC 

In question 2.g, most students managed to test their reasoning by building the program 

according to the blocks they completed (DH). However, the students in pair CA, who had 

generalized the incorrect reasoning from question 2.e, only realized their mistake during 

the whole group discussion when they noticed they had forgotten to account for the fixed 

rates. Pair AC, when constructing their program, noticed something was wrong and 

managed to resolve the issue by creating the variable x to store the value of the response.  

As students involved in this research already had some experience with Scratch and 

demonstrated code optimization skills (DH) in program construction, some of them men-

tioned that it was unnecessary to use the “say… for… seconds” block twice, suggesting the 
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use of the “join… …” block instead. They also questioned why a variable had not been defined 

to store the response. These questions were discussed collectively, and the teacher-

researcher explained them that that option was related to the possibility of the task being 

proposed to students with limited knowledge of Scratch programming.  

In this third set of questions, most students, starting from the analysis of a concrete 

example of the described situation, managed to advance their reasoning to reach a contex-

tualized generalization. They achieved this through the construction of a program to deter-

mine an object given an image in a nonlinear affine function and performed testing and 

validation of their reasoning. 

Group 4 

Most students exhibited difficulties in understanding the intended objective of this 

question. They focused on validating the specific situation presented in the task, using the 

given percentages to confirm the cost associated with each consumption, or using the final 

value to confirm the given percentages. Thus, initially they were not able to move from the 

specific values to a generalization. Considering this, the teacher-researcher suggested them 

to define a strategy using the specific values provided to verify the validity of the 

percentages presented in the question. They should identify the input and output data and, 

simultaneously, create a generic schema for the strategy they developed. This schema 

should allow them to calculate the percentages on any invoice they might come across. 

After this, students were able to extend their reasoning beyond a particular case by 

defining an algorithm to model the described situation and using various types of 

representation. Pair JF used natural language (FR) to describe the generalization of their 

reasoning (CG), identifying the input and output data and the steps to follow (AD), as 

illustrated in Figure 20.  

 

Figure 20. Explanation of the generalization constructed in question 3 by pair JF 
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Pair AC created a diagram with the concrete resolution (PR) and based on this 

representation, used a pre-symbolic language, combining natural language with 

mathematical symbols (FR, CG) to describe the procedures to be followed (AD) to generalize 

the described situation. They began by identifying the need to first determine (DE) the total 

expenses to be paid (Figure 21). Demonstrating a strong knowledge of Scratch 

programming and focusing on the construction of the program, pair HD (Figure 22) 

presented their explanatory diagram (AD, MM) using the blocks from this programming 

language. They identified the need for variables to store data related to consumption values, 

rates, and total expenses, which is the first operation they felt necessary to perform (DC).  

 

Figure 21. Explanatory diagram and program constructed in question 3 by pair AC 
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Figure 22. Explanatory diagram constructed in question 3 by pair HD 

The pair CA (Figure 23) started by creating an explanatory diagram (AD, MM) using 

natural language to identify the procedures to be carried out. They also recognized the need 

to store input data and the result of summing these data into variables (DC). This approach 

was later used to generalize the direct proportionality reasoning from the rule of three (PR), 

employing an alphanumeric expression – symbolic mathematical language (FR, SG). After 

building the program in Scratch, few students tested it, possibly due to a lack of time or 

because they did not feel the need to test it, as the percentage values were already provided 

in the given image. 
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Figure 23. Explanatory diagram and program constructed in question 3 by pair CA 
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After some initial constraints in this final question of the task that were addressed by the 

guidance of the teacher-researcher, the students were able to model a real-world situation 

of direct proportionality (linear function), transforming this model into a program in 

Scratch. However, most students felt no need to validate the programs they have built based 

on the concrete example presented. 

Discussion of results and conclusions 

The task designed within this study addresses the need for diversifying students’ learning 

experiences in mathematics, particularly to promote functional thinking (Pitta-Patanzi et 

al., 2020) and simultaneously to promote practices of computational thinking. It includes 

important mathematical processes such as justifying reasoning, expressing ideas, using 

various representations, and establishing connections between them (Swan, 2014), and it 

promotes the use of symbolic language, intra and extra-mathematical connections, and 

modelling real-world situations.  

This study provided evidence of the use of various practices of computational thinking 

and dimensions of functional thinking in solving the integration task, that met the 

intentionality with which it was designed. However, in the final question of the task, 

students exhibited difficulties in prioritizing details and extracting the essential information 

from the presented situation to build a mathematical model. This issue may be related to 

the higher demands associated with the practice of abstraction in modelling situations, as 

this corresponds to a higher level of cognitive challenge (Qian & Choi, 2023). It is also 

noteworthy that students employed some practices of computational thinking not 

anticipated in questions of group 1 (decomposition, pattern recognition), in questions of 

group 2 (abstraction), and in question 3 (pattern recognition), as well as dimensions of 

functional thinking in group 2 (symbolic generalization).  

When solving the different parts of the task, students used multiple representations 

(natural language, diagrams, flowcharts, symbols, formulas, and coded representations) to 

organize and represent their reasoning, an aspect of paramount importance to strengthen 

students’ functional thinking. It is noteworthy that in the final question, which involved 

constructing a program in Scratch, some groups used the unconventional form of repre-

senting generalization introduced in this study (coded representation) to justify their 

reasoning before building the program, even though that was not required. Thus, these 

students were able to give meaning to their ideas in increasingly abstract ways, progressing 

between natural and algebraic language. This new representation may serve as a scaffold to 

facilitate their transition to symbolic language. Additionally, by introducing the notion of 

affine function in a real-life context, supported by the use of concrete quantities like fixed 

and the variable component of the gas consumption situation, the task may contribute to 
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mitigate the difficulties students typically face with functions when introduced in an 

abstract manner (Warren & Cooper, 2005).  

Globally, students demonstrated the ability to make connections between concrete 

examples and more general situations, which facilitated a deeper understanding of the 

relationships between variables—something that the research points out as being a 

difficulty for students (Wilkie & Ayalon, 2018). Finally, the modelling question in the task 

allowed students to move beyond using the rule of three as a procedure for relating values, 

enabling them to generalize this procedure and thereby enhance their functional thinking. 

From the results of this study, we may argue that the integration task that starts with 

less demanding and unplugged questions, followed by questions involving the modification 

of existing objects and their validation, and then cognitively challenging questions that re-

quire establishing connections between concepts, provided the necessary support for stu-

dents’ functional thinking in relation to a new type of functions. However, the ultimate pur-

pose of adapting knowledge to new problem situations was not initially achieved as intend-

ed, therefore points out to the need of continuous contact of students with this type of tasks. 

In line with what Ye et al. (2023) discussed regarding the introduction of computational 

thinking in mathematics, the task proposed at the beginning of the teaching experiment 

intends to illustrate a possible way of teaching functions in connection with computational 

thinking. However, this new teaching approach must be carefully crafted in order not to add 

to the students' difficulties (Chan et al., 2021) related to programming. Thus, although the 

proposed task allows students to develop computational thinking practices, it does not 

require programming knowledge that could detract attention from the task’s mathematical 

focus or to make it too demanding for them. 

This study offers insights into the design of tasks that integrate computational thinking 

and functions, enabling students to move beyond mere algebraic manipulations and 

fostering the establishment of both intra and extra-mathematical connections. Additionally, 

similar to other non-conventional representations as those mentioned by Pinto et al. 

(2022), the coded representation introduced in the task helps enrich students' 

mathematical learning as it allows them to communicate their reasoning in less abstract 

way when they are still building their understanding of this type of functions.  As a matter 

of fact, they assumed the use of the response block in Scratch as representing an arbitrary 

value (in association with a variable) or faced the necessity of defining variables in the 

program assigning them one meaning that comes from concrete and authentic situation in 

the task statement, thus developing contextual generalizations (Radford, 2006). 

Being an exploratory study, there are some limitations to be considered. First, we 

recognize that the task’s options concerning the use of Scratch were somewhat limited and 

that future research could go deeper in envisioning new ways of supporting students in 

develop functional thinking in that context of block-programming. The same can be said 
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concerning promoting computational problem solving as the ones proposed by Cui et al. 

(2023), since the task in the present study is mainly closed in its structure and some 

question direct students to specific procedures. Nevertheless, the same authors point out 

that students often become stuck if tasks demand long procedures and provide no feedback, 

therefore some balance is needed concerning the tasks’ structure. 

Centring in only one task, the first of the teaching experiment, the findings of this study 

are still tentative and limited, but further analysis of students’ functional thinking may 

provide a better understanding of the potentialities of approaching functions in articulation 

with computational thinking. In this regard, an understanding of how students comprehend 

variables in programming language and in the context of the mathematical functions is 

another aspect that was not analysed in this study but that has great importance (Bråting & 

Kilhamn, 2021). 

Corroborating the idea of Hickmott et al. (2018), the introduction of computational 

thinking in mathematics presents many challenges but also opportunities to enhance 

students’ mathematical understanding. Indeed, integrating computational thinking into 

mathematics will bring changes in the types of tasks proposed to students (Kallia et al., 

2021), as well as in the reasoning processes they use when solving these tasks. This study, 

conducted in real classroom settings and reflecting the complexity of real-world teaching 

conditions, may contribute to the development of new educational resources. It may also 

support further research on functional thinking, which remains underrepresented in 

studies integrating computational thinking into mathematics learning. 

Acknowledgements 

This research was supported by the municipality of Oeiras, Portugal, with a scholarship to the 
first author, and by National Funds through FCT–Portuguese Foundation for Science and 
Technology, I.P., under the scope of UIDEF–Unidade de Investigação e Desenvolvimento em 

Educação e Formação, UIDB/04107/2020, https://doi.org/10.54499/UIDB/04107/2020. 

References 

Barcelos, T. S., Muñoz, R., Villarroel, R., & Silveira, I. F. (2018). A systematic literature review on 

relationships between computational thinking and mathematics. Journal on Computational 

Thinking, 2(1), 23-35. https://doi.org/10.14210/jcthink.v2.n1.p23  

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and 

what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. 

https://doi.org/10.1145/1929887.1929905 

Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In Lecture Notes in 

Computer Science (Vol. 11011 LNCS, pp. 497–521). Springer. https://doi.org/10.1007/978-3-

319-98355-4_29 

Best, M., & Bikner-Ahsbahs, A. (2017). The function concept at the transition to upper secondary 

school level: tasks for a situation of change. ZDM - Mathematics Education, 49(6), 865–880. 

https://doi.org/10.1007/s11858-017-0880-6 

https://doi.org/10.54499/UIDB/04107/2020
https://doi.org/10.14210/jcthink.v2.n1.p23
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/978-3-319-98355-4_29
https://doi.org/10.1007/s11858-017-0880-6


 

218 A. Mateus, H. Oliveira, J. Piedade 

 

Quadrante 33(2) 193-222 

 

Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into Algebra in the elementary 

grades. In J. Cai, & E &. Knuth (eds.), Early Algebraization: A global dialogue from multiple 

perspectives (pp. 5–23). Springer. https://doi.org/10.1007/978-3-642-17735-4_2 

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal 

of Mathematical Modelling and Application, 1(1), 45-58. 

Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. 

Mathematical Thinking and Learning, 23(2), 170–185. https://doi.org/10.1080/

10986065.2020.1779012 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 

computational thinking. In Proceedings of the 2012 annual meeting of the American educational 

research association, 1. https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf  

Cabral, J., Mendes, F., & Oliveira, H. (2022). A capacidade de noticing do pensamento algébrico dos 

alunos: um estudo na formação inicial.  Quadrante, 31(1), 28–53. https://doi.org/10.48489/

quadrante.27091  

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical 

perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5 

Canavarro, A. P., Mestre, C., Gomes, D., Santos, E., Santos, L., Brunheira, L., Vicente, M., Gouveia, M. J., 

Correia, P., Marques, P. M., & Espadeiro, R. G. (2021). Aprendizagens Essenciais de Matemática: 

8.º ano. Direção-Geral da Educação. http://www.dge.mec.pt/sites/default/files/Curriculo/

Aprendizagens_Essenciais/3_ciclo/ae_mat_8.o_ano.pdf   

Chan, S. W., Looi, C. K., Ho, W. K., Huang, W., Seow, P., & Wu, L. (2021). Learning number patterns 

through computational thinking activities: A Rasch model analysis. Heliyon, 7(9). https://

doi.org/10.1016/j.heliyon.2021.e07922 

Chan, S. W., Looi, C. K., Ho, W. K., & Kim, M. S. (2023). Tools and approaches for integrating 

Computational Thinking and Mathematics: A Scoping Review of Current Empirical Studies. 

Journal of Educational Computing Research, 60(8), 2036–2080. https://doi.org/10.1177/

07356331221098793 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education 

research. Educationa Researcher, 32(1), 9–13.  

Cui, Z., Ng, O., & Jong, M. S.-Y. (2023). Integration of Computational Thinking with Mathematical 

Problem-based Learning: Insights on Affordances for Learning. Educational Technology & 

Society, 26(2). 131-146. https://doi.org/10.30191/ETS.202304_26(2).0010  

Evaristo, I. S., Terçariol, A. A. L., & Ikeshoji, E. A. B. (2022). Do pensamento computacional desplugado 

ao plugado no processo de aprendizagem da Matemática. Revista Latinoamericana de 

Tecnología Educativa, 21(1), 75–96. https://doi.org/10.17398/1695-288X.21.1.75 

Gomes, T. C. S., Falcão, T. P., & Tedesco, P. C. D. A. R. (2018). Exploring an approach based on digital 

games for teaching programming concepts to young children. International Journal of Child-

Computer Interaction, 16, 77-84. https://doi.org/10.1016/j.ijcci.2017.12.005 

Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A Scoping Review of Studies on 

Computational Thinking in K–12 Mathematics Classrooms. Digital Experiences in Mathematics 

Education, 4(1), 48–69. https://doi.org/10.1007/s40751-017-0038-8 

Israel, M., & Lash, T. (2020). From classroom lessons to exploratory learning progressions: 

mathematics + computational thinking. Interactive Learning Environments, 28(3), 362–382. 

https://doi.org/10.1080/10494820.2019.1674879 

Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising 

computational thinking in mathematics education: a literature-informed Delphi study. 

Research in Mathematics Education, 23(2), 159–187. https://doi.org/10.1080/

14794802.2020.1852104 

Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and Principles for Task Design. In A. 

Watson, & M. Ohtani (Eds.), Task Design in Mathematics Education: an ICMI Study 22 (pp. 19–

81). Springer. https://doi.org/10.1007/978-3-319-09629-2_2  

https://doi.org/10.1007/978-3-642-17735-4_2
https://doi.org/10.1080/10986065.2020.1779012
https://doi.org/10.1080/10986065.2020.1779012
https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.48489/quadrante.27091
https://doi.org/10.48489/quadrante.27091
https://doi.org/10.1007/s11528-019-00410-5
http://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/ae_mat_8.o_ano.pdf
http://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/ae_mat_8.o_ano.pdf
https://doi.org/10.1016/j.heliyon.2021.e07922
https://doi.org/10.1016/j.heliyon.2021.e07922
https://doi.org/10.1177/07356331221098793
https://doi.org/10.1177/07356331221098793
https://doi.org/10.30191/ETS.202304_26(2).0010
https://doi.org/10.17398/1695-288X.21.1.75
https://doi.org/10.1016/j.ijcci.2017.12.005
https://doi.org/10.1007/s40751-017-0038-8
https://doi.org/10.1080/10494820.2019.1674879
https://doi.org/10.1080/14794802.2020.1852104
https://doi.org/10.1080/14794802.2020.1852104
https://doi.org/10.1007/978-3-319-09629-2_2


 

A task for integrating computational thinking in the learning of affine function… 219 

 

Quadrante 33(2) 193-222 

 

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A 

Pedagogical Framework for Computational Thinking. Digital Experiences in Mathematics 

Education, 3(2), 154–171. https://doi.org/10.1007/s40751-017-0031-2 

Martins, R., Viseu, F., & Rocha, H. (2023). Functional thinking: A study with 10th grade students. 

Education Sciences, 13(4), 335. https://doi.org/10.3390/educsci13040335 

Menezes, L., Oliveira, H., & Canavarro, A. P. (2015). Inquiry-based teaching: The case of Célia. In U. 

Gellert, J. Gimenez Rodrigues, C. Hahn, & S. Kafoussi (Eds.), Educational paths to Mathematics 

(pp. 305-321). Springer International Publishing. https://doi.org/10.1007/978-3-319-15410-

7_20  

Nordby, S.K., Bjerke, A.H., & Mifsud, L. (2022). Computational thinking in the primary mathematics 

classroom: A systematic review. Digital Experiences in Mathematics Education, 8, 27–49. 

https://doi.org/10.1007/s40751-022-00102-5 

Pinto, E., Cañadas, M. C., & Moreno, A. (2022). Functional relationships evidenced and 

representations used by third graders within a functional approach to Early 

Algebra. International Journal of Science and Mathematics Education, 20, 1183–1202. 

https://doi.org/10.1007/s10763-021-10183-0 

Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2020). Different types of algebraic thinking: An 

empirical study focusing on middle school students. International Journal of Science and 

Mathematics Education, 18, 965-984. https://doi.org/10.1007/s10763-019-10003-6 

Qian, Y., & Choi, I. (2023) Tracing the essence: ways to develop abstraction in computational thinking. 

Education Technology Research and Development, 71, 1055–1078. 

https://doi.org/10.1007/s11423-022-10182-0  

Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In 

S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the Twenty Eighth Annual 

Meeting of the North American Chapter of the International Group for the Psychology of 

Mathematics Education (Vol. 1, pp. 2–21). PME. http://www.luisradford.ca/pub/

60_pmena06.pdf 

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities 

underlie computational thinking? Criterion validity of the Computational Thinking Test. 

Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047 

Smith, E. (2008). Representational thinking as a framework for introducing functions in the 

elementary curriculum. In J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early 

grades (pp. 133-160). Lawrence Erlbaum Associates. 

Swan, M. (2014). Designing tasks and lessons that develop conceptual understanding, strategic 

competence and critical awareness. In A. Boavida, C. Delgado, E. Santos, F. Mendes, J. Brocardo, 

J. Duarte, L, Santos, M. Baía, & M. Figueiredo (Eds.), Encontro de Investigação em Educação 

Matemática (pp. 15-31). Sociedade Portuguesa de Investigação em Educação Matemática. 

Warren, E., & Cooper, T. (2005). Young children’s ability to use the balance strategy to solve for 

unknowns. Mathematics Education Research Journal, 17(1), 58-72. http://dx.doi.org/

10.1007/BF03217409 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and science classrooms. Journal of Science Education 

and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5  

Wilkie, K.J., Ayalon, M. (2018). Investigating Years 7 to 12 students’ knowledge of linear relationships 

through different contexts and representations. Mathematic Education Research Journal, 30, 

499–523. https://doi.org/10.1007/s13394-018-0236-8 

Wing, J. M. (2006). Computational thinking. In Communications of the ACM (Vol. 49, Issue 3, pp. 33–

35). Association for Computing Machinery. https://doi.org/10.1145/1118178.1118215 

Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational thinking in K-12 

mathematics education: a systematic review on CT-based mathematics instruction and student 

learning. International Journal of STEM Education, 10(3). https://doi.org/10.1186/s40594-

023-00396-w    
  

https://doi.org/10.1007/s40751-017-0031-2
https://doi.org/10.3390/educsci13040335
https://doi.org/10.1007/978-3-319-15410-7_20
https://doi.org/10.1007/978-3-319-15410-7_20
https://doi.org/10.1007/s40751-022-00102-5
https://doi.org/10.1007/s10763-021-10183-0
https://doi.org/10.1007/s10763-019-10003-6
https://doi.org/10.1007/s11423-022-10182-0
http://www.luisradford.ca/pub/60_pmena06.pdf
http://www.luisradford.ca/pub/60_pmena06.pdf
https://doi.org/10.1016/j.chb.2016.08.047
http://dx.doi.org/10.1007/BF03217409
http://dx.doi.org/10.1007/BF03217409
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s13394-018-0236-8
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1186/s40594-023-00396-w
https://doi.org/10.1186/s40594-023-00396-w


 

220 A. Mateus, H. Oliveira, J. Piedade 

 

Quadrante 33(2) 193-222 

 

Appendix 

Task 1: “Natural gas versus propane gas” 

Gas is a very common fuel in our homes, however, the type 

of gas available for consumption varies depending on the 

region of the country. In Portugal, the use of two types of gas 

prevails: bottled/piped propane gas, obtained from 

petroleum refinement processes, which are quite pollutant, 

and piped natural gas, which despite being a fossil fuel, emits 

less CO2 in its combustion. 

https://www.edp.pt/particulares/content-hub/gas-natural-ou-gas-propano/ 

 1. In the interior of the country, there is no piped gas available, so propane gas bottles are used. 

Each bottle costs approximately €33 and contains the equivalent of 11 m3 of natural gas. 

a) In this context, if we consume the equivalent of 10 m3 of natural gas in a month, what cost will 

this consumption correspond to? Justify your answer. 

 b) Complete the following flowchart that allows you to determine the cost of gas, in euros, 

depending on the amount of gas consumed, in cubic meters. 

 c) Write an algebraic expression that allows you to determine the cost of gas, y, in euros, 

depending on the amount of gas consumed, x, in cubic meters. 

2. Due to convenience, safety and price, in recent years piped natural gas has reached more and 

more homes. In the natural gas bill, there is a variable component, associated with gas 

consumption in cubic meters, and a fixed component, relating to several fees, namely the fixed 

term, access to the network and occupation of the underground. 

For the company that supplies the gas to automatically issue gas invoices, it is necessary to enter 

the number of cubic meters that were consumed in a month, real or estimated. Regarding this 

situation, the following program was built in Scratch. 

https://www.edp.pt/particulares/content-hub/gas-natural-ou-gas-propano/
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a) In this context of gas services, what do the values 1,755 and 2,868 mean? 

Note: In Scratch the dot means a comma. 

 b) When the program is executed, a dialog box for data entry appears at the beginning and, at 

the end, a data output dialog box, as illustrated in the images below. Fill in the blanks, knowing 

that the images correspond to the situation of a consumption of 10 m3 of natural gas this month. 

Justify your reasoning. 

  

    

  

  Access the QR code beside to confirm your answer. 

c) When building the program presented above in Scratch, two colleagues found that their 

programs were not reaching the same conclusion, however, for both of them everything seemed 

to be correct. Consider the two sets of blocks in the penultimate line of code of the program built 

by colleagues. Choose the correct option and explain the difference between them. 

 

Student A blocks 

 

Student B blocks 
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 d) Build a flowchart that reflects the presented situation in this program, using the variable x to 

represent the amount of natural gas consumed this month, in cubic meters. 

e) If the monthly fee is €39,95, how many cubic meters of natural gas have been consumed on 

that month? Explain your thoughts. 

f) Complete the blanks below in order to build a program that automatically determines the 

amount of cubic meters of gas consumed during a month, knowing the total amount paid in 

euros. 

 g) Access the Scratch website ( https://scratch.mit.edu/ ) to create this program. To do this, click 

“Create” and build the lines of code. Confirm the result obtained in paragraph e).  

3. Currently, it is very common for consumers to opt for a 

single company that simultaneously provides electricity and 

natural gas services. The invoice below contains details of 

electricity and natural gas consumption and the fees and 

taxes associated with both. Furthermore, at the beginning 

of the invoice, the total values of electricity and natural gas 

consumption and the respective fees and taxes are 

indicated, as well as the percentages associated with these costs, as illustrated in the figure on the 

side. 

Build a program in Scratch that allows you to verify the percentages shown in this figure. 

Suggestion: Start by drawing a flowchart or an explanatory diagram for the described situation. 

 

https://scratch.mit.edu/

