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Abstract. The scientific community has recognized that CT goes beyond computer science and 

should be meaningfully integrated across the curriculum. However, regarding math education most 

approaches, studies and tools are focusing on programming concepts in math-covered tasks, leaving 

high-level mathematical processes and competences in the background. Moreover, most research 

focuses on primary education, leaving gaps in understanding CT’s role in secondary mathematics. 

This paper proposes an approach that leverages programming to enhance Computational Thinking 

in the service of mathematical learning rather than the other way around. Through an empirical study 

with secondary students using MaLT2, an online 3D Turtle Geometry modeler, we investigate how 

CT can support mathematization, offering insights into the intersection of CT and mathematical 

reasoning. We explore different computational solutions to math problems, given by secondary 

students, discussing whether they are following a math-oriented or CS-oriented approach. The 

results showed that CT practices could be used in different ways for solving the same problem 
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computationally and depending on the approach they could promote either mathematical meaning 

making or computer science meaning making.  

Keywords: computational thinking; math education; constructionism; secondary education; 3D 

modeler; logo-based programming; computational practices. 

Resumo. A comunidade científica reconheceu que o Pensamento Computacional (PC) vai além da 

ciência da computação e deve ser integrado de forma significativa em todo o currículo. No entanto, 

no que diz respeito à educação matemática, a maioria das abordagens, estudos e ferramentas estão 

focadas em conceitos de programação em tarefas matemáticas, deixando processos matemáticos de 

alto nível e competências em segundo plano. Além disso, a maior parte das pesquisas concentra-se 

nos primeiros anos, deixando lacunas na compreensão do papel do PC na matemática do ensino 

secundário. Este artigo propõe uma abordagem que utiliza a programação para desenvolver o 

Pensamento Computacional ao serviço da aprendizagem matemática, em vez do contrário. Por meio 

de um estudo empírico com estudantes do ensino secundário utilizando o MaLT2, um modelador 

online de Geometria da Tartaruga em 3D, investigamos como o PC pode apoiar a matematização, 

oferecendo insights sobre a interseção entre o PC e o raciocínio matemático. Exploramos diferentes 

soluções computacionais para problemas matemáticos, dadas por estudantes do ensino secundário, 

discutindo se elas seguem uma abordagem orientada para a matemática ou para a ciência da 

computação. Os resultados mostraram que as práticas de PC podem ser usadas de diferentes 

maneiras para resolver o mesmo problema computacionalmente e, dependendo da abordagem, 

podem promover a construção de significado matemático ou de significado em ciência da 

computação. 

Palavras-chave: pensamento computacional; educação matemática; construcionismo; ensino 

secundário; modelador 3D; programação baseada em logo; práticas computacionais. 

Introduction 

Since around two decades before writing this paper, the development of student’s 

Computational Thinking (CT) had been increasingly considered and promoted as a 

transdisciplinary 21st century skill, connected to agendas and policies mainly addressing the 

need for digital literacy and citizenship. In recent years, the inclusion of CT in mathematics 

curricula has appeared as policy in some cases, mostly as an adjunct curriculum element, 

with little clarity on what mainstream mathematics education has to gain from this.   

Paradoxically, the idea of thinking computationally to solve mathematical problems is 

not that new. It originated in the context of programming to generate mathematical 

meaning cultivating deep experiential mathematical activity for learners. Seymour Papert's 

disruptive approach to learner engagement with mathematical thinking through 

constructionist programming activity was firstly elaborated as early as in the 60's (Papert, 

1972). Papert described the mental processes that students develop when they do 

mathematics with a List processing (LISP)-derived programming language he called ‘LOGO’ 

(from the Greek word ‘logismos’) using the term ‘algorithmic thinking’ (Papert, 1980), later 

elaborating this kind of activity with his group at the MIT Media Lab under the term 
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‘Constructionism’ (Papert & Harel, 1991; Kynigos, 2015). So, how was the connection 

between CT and mathematical thinking lost over the years?  

In the late 80's, 90's and early 00's, attention waned from uses of expressive digital media 

for programming and was rather diverted to uses of the awe-inspiring advent of multi-

media, the Internet and the web. Programmability re-emerged as an element of something 

broader, termed ‘computational thinking’, this time in a much more generalized sense, i.e. 

that of CT being an integral part of computational literacy and citizenship in the digital era 

(diSessa, 2001; Jansen et. al., 2018; Wing, 2006,). DiSessa (2001) made a clear distinction 

between the three pillars of this new literacy: a) digital technology (material pillar) which 

is the medium for exploration, b) mental processing, and interpretation of what is explored 

to personal knowledge (cognitive pillar) and c) social communication of knowledge (social 

pillar). In 2006, Wing, with her analysis of computational thinking, expanded the ideas of 

Papert and diSesssa beyond computer science or mathematical problem-solving. However, 

this new wave did not have much focus on constructionism, i.e. Papert and his group’s idea 

of learning though tinkering with models and developing a language to engage in discourse 

around this activity (Kafai & Resnick, 1996). Wing (2006) approached computational thin-

king as “a set of skills, strategies and behaviours”, that draws on fundamental concepts of 

computer science, but it can be implemented for solving problems across all disciplines as 

well as in everyday life. Today, many researchers agree that CT should be seen as a new kind 

of literacy which encompasses different scientific fields including mathematics, science and 

arts (e.g., Israel-Fishelson & Hershkovitz 2022; Kite et al. 2020; Li et al., 2020;). This literacy 

involves not only coding knowledge, but a set of skills, strategies and behaviors connected 

to a wider value of cultivating computational thinking for the 21st century citizen.  

So, the rhetoric and the whole approach now seems to have turned inside out. Rather 

than expanding from the generic idea of constructionist mathematical leaning with 

expressive media, to address transdisciplinary skills (with exceptions such as e.g. Kafai & 

Resnick, 1996), the task now is to consider how generalised CT can be employed in or added 

to domain – specific curricula including mathematics. Following that view, there have been 

efforts to integrate CT across the K-12 curricula as an important skill for all scientific fields 

and it is in this wake that CT has appeared as important enough to solicit inclusion in 

mathematics curricula.  

We feel that pertinent questions now need to be addressed. What has mathematics 

education to gain from the integration of CT concepts and practices in its curricula? How 

can we think of CT in the service of mathematics education? How should the CT paradigm be 

shaped in ways that bring added value to mathematical learning? In the wake of the CT 

movement, the potential value of learning to program has mostly been considered as an end 

in itself, without much thought on how it can be put to use by students for expressing 

mathematical concepts, creating digital objects and behaviors and solving problems. 
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According to recent reviews (Subramaniam et al., 2022) most studies that explore the 

integration of CT in mathematics education are focusing on the understanding of 

algorithmic and/or CT concepts in math-covered tasks, e.g. create a square with iteration to 

learn the repeat structure, but not the other way around, e.g. understand and use the square 

property using variables in a parametric procedure. In that way though, students’ 

mathematical reasoning and meaning making are overshadowed by the process of coding 

which simplifies or hides the mathematics behind the solution.  In addition, reviews show 

that CT and mathematics has mainly been studied in low-level mathematics classes in 

primary schools and researchers highlight the need for further research on the integration 

of secondary school mathematics with CT (Chan et al. 2023; Lv et al., 2023). 

In this paper we suggest that there is a need to invent, implement and study approaches 

that focus on CT in the service of mathematics education, i.e. the case of engaging in 

mathematical thinking through the use of programming as a means of expressing 

mathematical ideas while tinkering with digital models (Noss & Hoyles, 1996). Such 

approaches could contribute to the transformation of mathematics education using digital 

media and computational thinking. They would involve the learning of programming and 

mathematics in conjunction, providing students with experiences in mathematizations 

made possible through programming. Through an empirical study we explore possible 

connections and differences between mathematical and computer science learning through 

a CT activity in MaLT2;  a freely available online 3D Turtle Geometry modeler based on Logo, 

the language originally created for programmable mathematics (Papert, 1980), and 

affording dynamic manipulation of variable procedure values and 3D camera perusal. As 

part of a design-based research project we used MaLT2 in an empirical study with 

secondary education students. The aim was to answer the following question:  

A) Which CT practices students implement while engaged in mathematical activities in 

MaLT2? 

B) Which are the math-oriented and CS-oriented solutions that students implement in 

MaLT2 activities, and what are their differences? 

Theoretical Framework 

Computational Thinking for Math Education 

In the last decade, several studies have explored the integration of Computational Thinking 

to mathematics education. Recent studies on the field show its growing importance, and the 

various methods and challenges associated with its integration. Their results indicate that 

mathematical activties in which CT-based mathematical activities can encourage students 

to approach mathematical problems systematically, breaking them down into smaller, 

manageable parts and using algorithms to find solutions (Chan et al. 2021; Cui et al., 2023; 
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Shumway et al. 2021). Through coding and experimentation with computational 

mathematical artifacts students can develop mathematical problem-solving and problem 

formulation, and develop meanings of mathematical concepts, such as geometrical 

properties or numerical operations. Such activities can also offer a rich context for 

supporting the transdisciplinary integration of STEM education (Ng et al., 2023).  

Despite the growth in relevant studies and tools, there are still significant challenges and 

gaps to be explored for exploiting CT for mathematical learning in meaningful ways. 

According to recent reviews (Subramaniam et al., 2022; Ye et al., 2023), most relevant 

studies are curried out in primary or early secondary educational contexts. As such, they 

focus on simple or introductory mathematical concepts, leaving the connection of CT with 

high-level math concepts an understudied area. Moreover, researchers have highlighted 

that CT should not be introduced as an add-on to mathematics learning or as another 

context to learn programming (Ye et al., 2023). On the contrary, it is crucial to bring 

mathematical learning to the foreground of CT-based math activities and conduct more 

research on understanding and maximizing the ways CT can support mathematical learning. 

In that context, we argue that it is worth investigating and highlight the different mental 

processes in which students percieve and implement different CT elements in CT-based 

mathematical activities, i.e. in math-oriented or CS-oriented processes. Such exploration 

and destinction could help educators to design math activties that exploit CT to laverage 

mathematical problem solving and meaning making in ways that where not accessible 

before the integration of the two domains. Next, we will elaborate on two theoretical 

constructs that framed our approach of utilizing CT in the service of Math education. 

The first concerns the so-called “CT practices” and their strong connection to 

mathematical problem solving. Several CT Frameworks agree that CT involves a set of 

concepts, practices and perspectives that come from computer science but can be applied 

for solving problems computationally in different scientific fields and in everyday life (Tikva 

& Tambouris, 2020; Wing, 2008). The practices refer to certain processes for dealing with 

complex problems including, amongst others, abstraction, pattern recognition, 

decomposition and algorithm creation (Brennan & Resnick, 2012; Grover & Pea, 2018). 

However, similar practices have been described in mathematical problem solving and 

reasoning long before the definition of CT. For example, the practice of abstraction, which 

is central in most CT frameworks, is a core concept of mathematical problem solving. In 

programming, abstraction is usually approached through the creation of abstract data types 

or structures while in mathematics through the use of variables and functions in geometry 

and algebra (Kynigos, 1995; Mitchelmore, 2002). Another example is the design, 

manipulation and analysis of 3D geometrical shapes in geometry that involves pattern 

recognition and decomposition practices (e.g., break down the cube into squares, repeat a 

simple shape to construct a more complex one) which are also central to programming 
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(Tikva & Tambouris, 2021). In that sense, computational thinking frameworks could act as 

boundary objects between mathematics and computer science education (Ng et al., 2023). 

However in most CT-based mathematical activities is still quite vague in which context 

students implement and develop these practices and whether they focus more on the 

Computer Science or the Mathematical part. It would worth investigating and describe the 

different forms of CT practices that can be experienced in such activities, in a way that 

teachers and researchers could focus on the field of interest.  

The second point concerns the importance of student’s self-expression and 

communication of ideas through technology in mathematical learning and its support by 

constructionist CT tools. It is common that in many CT-based mathematical activities 

students are engaged in closed tasks that are solved through the creation of an algorithm 

(e.g. connect the given dots). However, in such tasks, students’ exploration is limited, and 

they tend to develop concept-specific fragmented knowledge. On the contrary, open-ended 

environments that enable students learn through making and sharing of digital artifacts, can 

be quite beneficiary for meaning generation and the development of problem solving 

practices. The idea of learning through tinkering models has its roots on Constructionist 

learning theory (Harel & Papert, 1991), a special kind of fallibilist mathematical activity 

(Ernest et al., 1991, Kynigos & Diamantidis 2021) which argues that learning occurs 

naturally when students take agency while making and sharing tangible digital artefacts. 

Constructionism comprises a strong educational design element (Kynigos, 2015), where 

powerful mathematical ideas are embedded by pedagogical designers in special kinds of 

artifacts accompanied by construction units and tools, even a construction language in some 

cases of digital media. Such construction kits are thus designed to provide dense 

opportunity for students to concretize and express their ideas by designing themselves, 

building and engineering (Healy & Kynigos, 2010). Thus, in digital constructionist learning 

environments learners' agency is encouraged since they become designers using 

technology to build and modify artifacts which become public entities when shared with 

peers, while teachers act as facilitators of the process (Kynigos & Diamantidis, 2021). This 

view highlights the importance of social participation in the learning process, as well as the 

emergent productions with usually low social impact range (Papert, 1980).  

From the two points raised above we can see that Computational Thinking practices have 

a strong connection with mathematical thinking and with the appropriate tools can become 

a strong vehicle in mathematical learning .However, we think that there is still a gap in the 

research, where the  question is what kind of tools and activities can afford this kind of 

engagement with mathematics through coding and sharing of digital artifacts in a way that 

brings mathematical meaning making to the foreground of CT activity rather than the 

opposite. 
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Meshing computational and mathematical affordances in digital learning tools 

Despite the wide range of existing digital tools for CT in computer-science education there 

are still very few prioritizing mathematical learning through programming. As a result, most 

empirical studies for CT in math education are using tools originally designed to learn 

programming, such as Scratch (Benton et al., 2017). These tools meet the needs for early-

stage mathematics of primary education (Nordby et al., 2022), but usually fail to address 

the representation and exploration of more complex mathematical concepts of secondary 

and higher education. One solution to that issue can be the integration of diverse 

affordances in digital environments, which been proven beneficial for learning of otherwise 

complex and abstract concepts usually inaccessible before that integration (diSessa, 2001; 

Morgan & Kynigos, 2014). The affordances of a digital environment refer to the 

opportunities or restrictions it causes to the learning process by enabling actions between 

the digital artefact and the student (Calder, 2012). 

 

Figure 1. A dynamic ‘Biangle on a sphere’ in MaLT2 environment, showing the 3 affordances a) 
the 3D scene with camera perusal b) the text-based programming and c) the dynamic 

manipulation tool 

In our approach we use an environment that integrates three affordances for math-

oriented computational thinking called MaLT2, shown in Figure 1 (Kynigos & Diamantidis, 

2021; Kynigos & Grizioti, 2018), accessible at http://etl.ppp.uoa.gr/malt2/. The affordances 

were carefully selected so that they bring mathematical reasoning to the foreground and 

connect math with coding in a meaningful way for math education.  These are a) Logo-based 

programming of figural 3D models with a language that extends Berkley Logo (Harvey, 

1997) with commands for 3D state movements, b) Dynamic manipulation of any figural 

models created by a parametric procedure. A ‘variation tool’ with sliders, allows for the 

instant variation of the parameter values of the executed parametric procedure, resulting 

in the animation of the model on the scene. c) 3D navigation with a periscopic camera in the 

3D scene that allows for examination of 3D models from different angles and scales. The 

three integrated affordances can allow hard, elusive, or even unattainable mathematical 

concepts to become understandable and useable by young learners (Kynigos & Grizioti, 

http://etl.ppp.uoa.gr/malt2/
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2018).  Consider for example the “biangle” on a sphere shown in Figure 1 constructed in 

MaLT2. This is a figure not easily represented with traditional media and at the same time 

embeds mathematics hardly accessible particularly to students with other means, such as 

curvature, geodesic and spherical geometry.  

 

Figure 2. A dynamic square that curves in space in MaLT2 environment 

Another example is the dynamic curved square in Figure 2 in which we can think of 

properties of a cylindrical segment as generated by curving the two opposite segments of a 

square. This places concepts related to cylinder, like the height, at the centre of a 

conglomeration of concepts not usually connected with cylinder in traditional curricula 

such as linear and angular properties of a square.  

Methodology and implementation context 

To answer the research questions presented earlier we organized an empirical study with 

students in a school context. The aim was to study in depth how students interact with the 

tool and with each other while performing certain CT-based mathematical activities in 

MaLT2 environment.  

Research methodology 

Since the aim of this study was to identify new forms of CT practices through an approach 

that has not been studied before, it was important to analyze students’ activity and 

interactions throughout the implementation. Thus, a qualitative methodology was 

necessary. The research method we used is that of Design-Based Research which evolved 

from design experiments (Barab & Squire, 2004; Cobb et al., 2003) and includes the design 

of a pedagogical intervention and its evaluation in real classroom settings with the aim to 

refine the initial pedagogical design and to develop new theories. We organized a two-year 

design-based project with two repeated cycles of design, implementation in school context, 

evaluation, and review. In the first year, a pilot study with secondary education students 

was implemented that led to the main exploratory study in the second year.  This paper 

presents and discusses the results of the latter study.  
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Participants, context and process 

The main study was implemented as an after-school activity in a junior high school in Greece 

during the school year 2021-2022. It had a duration of 15 hours divided into three sessions. 

The participants were 12 students aged 14-15 years old who participated voluntarily. The 

students worked collaboratively in four groups of three members using one laptop per 

group. The groups were formed by the mathematics schoolteacher aiming to have mixed 

groups regarding their math performance. In the first session, they constructed 2D and 3D 

geometrical objects in MaLT2, including a square, a cube and a pyramid. In that phase, apart 

from free exploration of the tool, they were also given 2 short math-oriented tasks: a)  

“create a parallelogram that can never become a square” and b) “create a procedure that 

draws all the diagonals of any polygon”. The aim of the tasks was on one hand for students 

to become familiar with MaLT2 affordances (e.g. dynamic manipulation of the square, 

procedural programming) and on the other hand for research to study the solutions that 

students would develop for such tasks. In the second and third sessions they freely used 

these objects as building blocks to design an animated scene of their choice. These two 

phases aimed to the expression of creative ideas by the students and the study of the CT 

practices they may use in their implementation. Regarding the mathematical level of the 

students, they had been taught the geometrical properties of 2D objects such as the square 

and the parallelogram as long as linear functions. They had no experience with 3D geometry, 

as it is not part of middle school curriculum. They also did not have previous experience 

with the MaLT2 tool and had little experience in Logo-based programming from Computer 

Science classes.  

Data collection and analysis methods 

To better understand student learning activity, we collected a set of qualitative data 

throughout the study. This involved screen and audio recordings from each group with a 

total duration of 35 hours and 21 digital artifacts created in MaTL2 by all groups. We did a 

comparative thematic analysis of the collected data using the Atlas.ti tool. First, we analyzed 

the transcribed audio recordings of student dialogues looking for critical incidents (Tripp, 

2011), i.e. interesting moments of students' interactions with the tool or with each other 

that can relate to the research question, which we coded with analysis codes. For the coding 

of the critical incidents we used the abductive coding approach (Tavory & Timmermans, 

2019), that is to start the analysis with an initial coding scheme which is then modified and 

enhanced with new emergent codes leading to a final scheme after several iterations. This 

approach allowed the researcher to remain open to emergent findings. Then we 

triangulated the incidents with the screen recordings and the digital artifacts validate the 

coding scheme and to identify themes of similar codes. For the first RQ we focused on CT 

practices drawn from relevant CT frameworks found in the literature (Tikva & Tambouris, 
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2021) and whether participants used them in mathematical problem solving. For the second 

RQ we further analyzed the episodes of the detected CT strategies of RQ1 to identify CS-

oriented or math-oriented approaches, creating new codes where necessary. The final 

coding scheme was reviewed by an external researcher from the field of digital media and 

programming in mathematics education. 

Results 

In the analysis for the first RQ we identified three CT practices implemented by the students 

in the two phases of the study: abstraction, pattern recognition and decomposition (Table 

1-column a). Abstraction code referred to processes of generalizing a specific solution to a 

general one that could be applied in different cases. Pattern recognition code involved 

processes of recognizing similarities (patterns) between entities. These entities were not 

only algorithmic commands but also geometrical objects or different problems. 

Decomposition code was related to processes of breaking down a complex entity (i.e. a 

problem, an algorithm, an object) into smaller parts that were more manageable to handle 

and understand. In the second part of the analysis for RQ2, for each practice we identified 

different forms in which students implemented it in their solutions, which were coded as 

‘CS-oriented’ or ‘math-oriented’ depending on the concepts and competences they involved 

(Table 1). For instance, regarding pattern recognition practice, we detected 3 different 

forms: “code patterns, visual patterns and numerical patterns”. In table 1 we give some 

examples of codes of both categories (CS-oriented and math-oriented) for each CT practice 

and a short description explaining the rationale behind the coding. Next, we present three 

representative cases of students’ activity that show the difference between CS-oriented and 

math-oriented implementation of CT practices. We further discuss how CT in each 

implementation may foster or hamper down the process of mathematical meaning making. 

Example 1: The case of a non-Square Parallelogram 

One of the tasks given to the students was to create a parametric model of a parallelogram 

that would never become a square, i.e. with any value that are executed. After activity and 

deliberation leading to the production of a generalised parallelogram, adjoining segments 

independent, opposite segments equal, consecutive turns supplementary. But in one class a 

group of students mistakenly thought that this definition was too general because as they 

said, it did not only create parallelograms but also squares (Kynigos & Diamantidis, 2021). 

Their teacher did not intervene to provide information about this error. He appreciated the 

initiative and the agency and allowed this to become a classroom project - how to create a 

parallelogram which can never become a square.  
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Table 1. Examples of codes for each CT practice and their description 

CT Practice Example of Codes Description 

Abstraction 

Code abstraction (CS-oriented) Implement abstraction in their code e.g. add 

parameters to a Logo procedure, use variables 

instead of numbers 

Geometrical abstraction (math-

oriented) 

Express abstract rules for the 3D model on the 

scene e.g. generalize a 3D objects’ properties 

Algebraic abstraction (math-

oriented) 

Create relations between variables using 

mathematical functions e.g. create periodic 

animation of two 3D objects, create proportional 

animation between two moving parts 

Pattern 

Recognition 

Code patterns (CS-oriented) Implement/find a pattern in the Logo algorithm. 

E.g. repeat a set of commands, repeat a function 

Visual patterns (math-

oriented) 

Create/find patterns in the 3D model e.g. 

sequence of shapes, create a pattern in the 

animation of an object 

Numerical patterns (math-

oriented) 

Use the sliders to create patterns while changing 

the numerical input of a procedure (e.g. change 

the slider step to alter the animation, change the 

slider limits) 

Decomposition 

Code decomposition (CS-

oriented) 

Break down the code to different procedures with 

a focus on the commands 

Visual decomposition (math-

oriented) 

Break down the code based on the different 

geometrical elements of the visual result e.g. 

create one procedure for the house roof and one 

the main part. 

Problem decomposition (CS-

oriented) 

Break down a design problem into smaller parts 

and solve them separately. E.g. approach the 

design of the house parts as separate problems 

and then combine them together. 

 

In the data analysis we observed that all given solutions could be grouped into two types: 

a math-oriented solution that uses a distorted functional relation between the two 

consecutive sides of the rectangle, and a CS-oriented solution that uses conditional 

statements for avoiding the creation of a square (i.e. turn 90 degrees). Figure 3 shows two 

such examples given by two groups, while critical incident 1 in Table 2 shows a 

representative moment of group 2 students dialogue, while they decide to implement the 

math-oriented solution. The students first express their ideas about the properties of the 

square and those of the rectangles. When S2 says that in order to reassure that the sparrow 

would never draw a square they have to be sure that the angle is never 90 degrees, S1 

explains that rectangles have 90-degree angles, but they are not squares, as they don’t have 

equal sides. Through the discussion they decide to focus on sides’ length rather than the 
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angles of the parallelogram. Later, S1 suggests having two variables, one for each pair of 

sides. At that moment S2 express the idea of creating a functional relation between the non-

equal sides for having only one slider to manipulate the shape. In the end they decide to use 

two parameters, :x for the side length and :c for the angles between the sides. In the code 

(Figure 3a) they have used unequal functional relations between the consecutive sides of 

the parallelogram by telling the hummingbird to move forward x steps, turn right c degrees 

and then move forward x+20 steps, resulting in a non-square shape even when the angle 

(:c) is 90 degree. In this case students thought about the definition of a rectangle and that of 

a square and created a design that fits the one but not the other. This solution involves 

mathematical reasoning about both the quadrilaterals’ properties and about functional 

relations (replace y with x+20 for the second pair of edges). We can say that this is a math-

oriented computational solution as CT concepts (repetition, variables) are being used to 

achieve the target by doing mathematics.  

Table 2. Critical Incident 1 

St.  Transcription Code 

S1 Ok so to exclude all squares we need the ensure that the two 

opposite sides are never equal. [changes the slider to animate the 

shape for different input values for the side lenght] 

Mathematical meaning 

making→ quadrilaterals 

S2 And that the angle is not 90 degrees. 

S1 No this doesn’t matter. If the angle is 90 and the two opposite sides 

are unequal it would be a rectangle, not a square. Look [puts the 

slider for the angle to 90 and changes the other two to create a 

rectangle] 

S2 You are right.   

S1 Let’s try to tell the bird to move forward x steps for the two 

opposite sides and y steps for the two other 

Code patterns 

S2 Or we can have only one variable x and the other can be x plus a 

number, like x + 30. In that way we will have only one slider! 

Mathematical meaning 

making→ functional relations 

 

 

Figure 3: Two student solutions for the problem of non-square parallelogram. a) math-
oriented using functional relations b) CS-oriented using if structure 
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The other solution developed by group 1 students (Figure 3b) uses three parameters, :a 

for the two opposite sides length, :b for the other two opposite sides length, and :c for the 

angle turn. The code draws a rectangle with no functional relation between its sides. 

Students used the conditional structure “if” to check whether the input number for the angle 

parameter (a) is 90. In that case the algorithm does not do anything, avoiding drawing a 

square, but also all other rectangles that are not squares and should be drawn according to 

the task. Regarding mathematical meaning making, this solution avoids the use of functional 

relations and follows a more CS-oriented approach.   

Example 2: The case of n houses 

In the phase of creative construction, a group of students decided to create an animated 

neighborhood consisting of a variable number of 3D models of consequent houses defined 

by a variable ‘a’. The number of houses would change with the slider of the ‘a’ parameter 

creating an interesting animation. Their first attempt was to repeat the procedure “house” 

‘a’ times, which however resulted to the model shown in figure 4a. The cause was that the 

ending position of the hummingbird (the equivalent of the ‘turtle’ avatar in Turtle Geome-

try), after drawing the house, was the top of the pyramid, rather than the bottom of the cube. 

Note that to create the house in the first place, students developed and used the trigono-

metric and Pythagorean properties to get the hummingbird to the center of the square base 

and then send it up adding the height of the pyramid rooftop to the cube’s length.  

 

Figure 4: From left to right: a) the wrong construction of n houses, b) the CS-oriented 
solution, c) the math-oriented solution 

To solve the problem of taking the hummingbird from the rooftop pyramid vertex to a 

point appropriate in order to build an adjoining house, the students developed two 

solutions that were both functional and with the required result. However, when looking at 

the two codes and the meanings students developed through their dialogues, we can see 

two quite different approaches from a conceptual point of view. The first, coded as “CS-

oriented”, involved concepts and practices from computer science (Figure 4b). After 

drawing one house the hummingbird goes to position [0.0.0] with the ‘home’ command, 
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orients down and then moves forward x*n (where x is the length of the cube and n the 

number of houses drawn so far in the repetition).  

In the second solution, coded as “math-oriented”, the hummingbird moves to the correct 

position of the pyramid’s base using relatively complex mathematical calculations originally 

used to get it to the rooftop (Figure 4c). This involved adding the cube’s height to the 

pyramid’s central height calculated with Pythagorean theorem and then going to the corner 

of the cube basis. Critical incident 2 (Table 3) is a representative moment of this process, in 

which students express mathematical ideas for solving the problem of n-houses. After 

visually decomposing the house to smaller geometrical shapes they discuss how they could 

apply mathematics (Pythagorean theorem, calculation of angles) to bring the hummingbird 

to the correct position before drawing the next house. In this solution students considered 

the hummingbird’s end position as part of the geometrical figure and thus it is calculated 

inside the ‘house’ procedure, and it is independent from any external repetition. On the 

contrary, in the first solution the end position of the hummingbird was approached as part 

of the repeat structure and was consequently calculated outside the ‘house’ procedure 

where a local variable is created (n) counting the repetition number. As in the previous case, 

here CT concepts (repetition and home command) were used to skip some mathematical 

ideas that were developed in the first solution. 

 
Table 3. Critical Incident 2 

St.  Transcription Code 

S3 So, after drawing the house we want the bird to go to this corner 

before drawing the next house [points the mouse pointer to the front 

down right corner of the cube] 

 

S4 Yes but there is no such command. Do we have to find the co-

ordinates and say go to x y? 

 

S3 No no. Let’s think. We need to take it to this point of the pyramid and 

then it is just go forward the length of the cube 

Visual decomposition 

S4 Oh, you are right. So, we only need to calculate this edge of the 

pyramid! How much is this? [Turns the camera to look the shape from 

different angles] 

Visual decomposition 

S3 Maybe we could use the Pythagorean theorem for this triangle?  

[shows the triangle with the mouse while turning the camera around] 

Mathematical Meaning 

Making 

S4 But we don’t know this angle  

S3 Ok. Let’s look at the commands that create the pyramid and maybe we 

can find the angles there. And we can do the opposite calculations. 

 

Example 3: The case of polygon diagonals 

Rather than only juxtaposing CT and mathematical solutions it was interesting to us to 

consider cases where CT in fact helped to structure the mathematical properties in a unique 

way. In the second task of the first session, students tried to create a parametric procedure 
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that would draw all the ‘diagonals’ of any polygon. One interesting solution is the one shown 

in Figure 5. The code follows the CT practice of decomposition in a way that makes complex 

mathematics easier to express and to understand. It consists of one main procedure 

(diagonals :n :s) and four sub-procedures. The sub-procedure draw_diagonals :n :s :k 

(Figure 5b) uses the CT concept of recursion to draw :n-2 diagonals of a n-sided polygonwith 

only four commands (a turn right, a move forward and a move backward). The mathema-

tical calculations for a) the length of the diagonal and b) the turn required from the 

respective polygon vertex to create it are expressed in two separate sub-procedures called 

‘diameter’ and ‘length_diagonal’ (Figure 5a), highlighting the mathematics of the solution in 

a neat way. The solution can also be found online in this url: ‘http://etl.ppp.uoa.gr/

malt2/?diagonals’. 

This example utilizes the feature of structured procedural programming, offered by the 

Logo-based language of MaLT2, to decompose the algorithm in an easy-to-follow structure. 

This is a case where the CT practice of decomposition along with CT concepts of repetition 

and recursion are being used to create accessible solutions that make mathematical ideas 

easier grasp, rather than traditional solutions with long algebraic expressions and 

“spaghetti” code. Here, students also made a distinction between what we could called 

‘mathematical’ procedures, that are those focusing on do the math calculations needed for 

the algorithm, and ‘computational’ procedures designed to do the step-by-step solution of 

the problem in a computationally efficient way (e.g. by using recursion).  

 

Figure 5: A solution for the polygon diagonals a) on the left, two sub-procedures focusing on 
the mathematics b) two procedures that call the ‘mathematical’ procedures 

Discussion 

The results of the presented study show that CT concepts and practices may be used in 

different ways for solving the same mathematical problem in constructionist coding tools 

like MaLT2. Depending on the approach that is implemented in the solution, CT could be 

utilized to promote either mathematical meaning making or computer science meaning 
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making, like in the example of n houses. The different forms of CT practices shown in table 

1, indicate that  CT can have a wide range of implementations and approaches in which 

programming is there but not with the traditional role. This finding is in alignment with 

recent studies and reviews which highlight the need of taking CT beyond programming and 

Computer Science learning (Kite et al. 2021). The different solutions presented in the three 

examples, show how CT concepts (e.g. recursion, repetition, procedural programming) and 

CT practices (e.g. decomposition, abstraction) can be used in diverse ways for mathematical 

meaning making by the students. For instance, in order to solve the problem with the 

repetitive houses students used decomposition in a visual way, that was to break down the 

different shapes of the house and then to focus on the specific triangle and its geometrical 

properties in combination with the respective commands. In the example of the diagonals 

students used decomposition in their code by breaking down their algorithm to smaller 

procedures making the mathematical calcuations more manageble.  

The study results they also revealed that in some cases  the use of CT concepts for solving 

a mathematical problem could conceal the mathematics expected to be used by students in 

a given task. For example, the use of conditionals in the first example (the non-square 

parallelogram) was computationally correct but prevented students from thinking about 

functional relations and design a more general and mathematically correct solution for the 

given task. This finding highlights the importance of a thorough didactical engineering of CT 

activities by math teachers in order to bring math competences and concepts to the 

foreground. There is need for more studies and new frameworks that would focus on the 

design process of activities that utilize CT in the service of mathematical learning rather 

than the other way around. 

Finally the results indicate that the integration of math-oriented affordances in 

educational programming tools, such as 3D design and dynamic manipulation, can enhance 

the development of CT practices in a mathematical context. Dynamic manipulation allows 

for animations affording students with a sense of normalization but also a tangible 

experience of what changes and what stays the same in a mathematical construction. 

Considering models in 3D space greatly enhances the mathematics accessible to students 

for mathematizations in relation to what was possible with non-digital means. The notion 

of embedding mathematical concepts and properties in a parametric algorithm creating a 

figural animation provides teachers with the potential to generate situations where 

students may focus and use a specific field of concepts. Also, the students might develop 

experiences with mathematical generalizations such as the idea of a property of a class of 

figures or constructs or the idea of generalized number and variable. A point worth 

mentioning is that in the three examples, students’ collaboration and communication with 

each other played a key role in the meaningful exploitation of these affordances during the 

learning activity. Other studies have shown as well that collaborative activities with digital 
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media can enable students to critically reexamine their claims and build on each other's 

ideas, leading to more sophisticated reasoning and understanding of mathematical concepts 

(Francisco, 2013; Noss & Hoyles, 1996; Kynigos et al., 2020). In this study we further 

showed the importance of collaboration in the exploitation of the computational 

affordances of the learning environment in favor of mathematical meaning making. In both 

critical incidents that we presented, students made use of the affordances (e.g. the camera, 

the sliders) while arguing about their ideas on the solution, leading them to generate 

meanings about mathematical concepts (e.g. the rule about rectangles and squares) through 

computational practices. It was their disagreements and different perspectives that lead 

them to utilize computational concepts for supporting their arguments (like in the example 

of the non-square parallelogram) or for contributing to the solution of the other team 

member (in the example of the n-houses).  

The presented study had also some limitations that should be mentioned. The small 

number of participants does not allow for generalizability of the results. However, it was 

necessary for the qualitative analysis that resulted to a first coding scheme that can be used 

and evaluated in future studies with a larger number of participants. In addition, the imple-

mentation needed to be longer since many students did not have the time to complete their 

constructions, which would probably provide us with more data for their learning activity. 

Conclusion  

This paper presented the results of an empirical study that explored the different ways in 

which secondary school students implement CT practices to solve mathematical problems 

in the MaLT2 online tool. The results from the qualitative analysis of 12 students’ dialogues 

and interactions, showed that they implemented the CT practices abstraction, pattern 

recognition and decomposition in their solutions. In the results we further identified and 

described math-oriented and CS-oriented solutions of students’ CT practices. Abstraction 

was identified in three forms, i.e. as “code abstraction” (cs-oriented), “geometrical 

abstraction” (math-oriented) and “algebraic abstraction” (math-oriented). Pattern 

recognition was identified in the forms of “code abstraction”(cs-oriented), “visual patterns”  

(math-oriented) and “numerical patterns” (math-oriented). Decomposition was detected in 

the forms of “code decomposition” (cs-oriented) , “visual decomposition” (math oriented) 

and “problem decomposition” (cs-oriented). The three examples that were presented 

explore the differences of these solutions in terms of the meanings students develop and 

their connection to computer science or mathematical learning. Based on the results and 

discussion we suggest that there is a need to re-think ways in which CT can come back to 

serve mathematics education by means of providing students with a representational 

medium to engage in mathematization experiences through programming. We could 

imagine a whole curriculum with the multitude of option to embed, math-oriented CT 
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models and the wealth of student solutions and constructions of such models in discursive 

collectives enhancing both mathematical thinking and vocabulary and most of all bringing 

back a love for mathematics and mathematical thinking in young people. Further research 

could shed light on the mapping between Math and CT and lead to a CT framework for math 

education, which is currently missing from the literature. 
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