A simulação em Probabilidades e Estatística: potencialidades e limitações

Palavras-chave: Simulação em Probabilidades e Estatística, Potencialidades e limitações da simulação, O problema de Monty Hall, Implicações didácticas

Resumo

Para além de constituir um importante método de trabalho para o estatístico, a simulação assume-se como um dos principais usos didácticos da tecnologia no ensino das Probabilidades e Estatística. Com fins didácticos, alternativamente, a simulação também pode realizar-se sem recurso a tecnologia, socorrendo-se de materiais concretos. Neste trabalho, primeiro, analisamos a importância da simulação em Probabilidades e Estatística e as suas potencialidades e limitações como instrumento didáctico. Seguidamente, usamos a análise de um problema clássico de Probabilidades (problema de Monty Hall) e três tipos possíveis de solução para mostrar que a tecnologia, em si mesma, não determina a actividade matemática e a aprendizagem do aluno, pois esta depende também da situação didáctica e da forma como o professor organiza o discurso na sala de aula. Finalmente, apresentamos algumas implicações do uso da simulação na aprendizagem de Probabilidades e Estatística.

Downloads

Não há dados estatísticos.

Referências

Batanero, C. (2003). La simulación como instrumento de modelización en probabilidad. Educación y Pedagogía, 35, 37–64.

Batanero, C., Henry, M., & Parzysz (2005). Th e nature of chance and probability. In G. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 15–37). New York: Springer.

Ben-Zvi, D. (2000). Towards understanding the role of technological tools in statistical learning. Mathematics Thinking and Learning, 2(1&2), 127–155.

Biehler, R. (1997). Software for learning and for doing statistics. International Statistical Review, 65(2), 167–190.

Biehler, R. (2003). Interrelated learning and working environments for supporting the use of computer tools in introductory courses. In L. Weldon & J. Engel (Eds.), Proceedings of IASE Conference on Teaching Statistics and the Internet. Berlin: IASE.

Biehler, R. (2006). Working styles and obstacles: computer supported collaborative learning in statistics. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador (Bahia), Brazil: International Association for Statistical Education, CD-ROM.

Blejec, A. (2003). Teaching statistics by using simulations on the Internet. In L. Weldon & J. Engel (Eds.), Statistics and the Internet. Voorburg: International Statistical Institute, CD-ROM.

Bohl, A. H., Liberatore, M. J., & Nydick, R. L. (1995). A tale of two goats and a car, or the importance of assumptions in problem solutions. Journal of Recreational Mathematics, 1–9.

Borovcnik, M., & Peard, R. (1996). Probability. In A. J. Bishop et al. (Eds.), International handbook of mathematics education (pp. 239–287). Dordrecht: Kluwer Academic Publishers.

Borovcnik, M. (2006). Probabilistic and statistical thinking. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 484–506). Barcelona: IQS Fundemi. Online: http://ermeweb.free.fr/CERME4/.

Borovcnik, M. (2007). New technologies revolutionize the applications of statistics and its teaching. Invited paper at the International Statistical Institute 56th. Session. Lisbon: International Statistical Institute.

Burrill, G. (2002). Simulation as a tool to develop statistical understanding. In B. Phillips (Ed.), Proceedings of the Sixth International Conference on Teaching Statistics. Cape Town, South Africa: International Association for Statistics Education. Online: www.stat.auckland.ac.nz/~iase/publications.

Chance, B., Ben-Zvi, D., Garfi eld , J., & Medina , E. (2007). The role of technology in improving student learning of statistics. Technology Innovations in Statistics Education Journal 1(1). Online: http://escholarship.org/uc/item/8sd2t4rr.

Chance, B., delMas, R. C., & Garfi eld, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfi eld (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 295–323).Amsterdam: Kluwer.

Chance, B., & Rossman, A. (2006). Using simulation to teach and learn statistics. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador (Bahia), Brazil: International Association for Statistical Education, CD-ROM.

Chaput, B., Girard, J. C., & Henry, M. (2008). modeling and simulations in statistics education. In C. Batanero, G. Burrill, C. Reading & A. Rossman (Eds.), Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Proceedings of the ICMI Study 18 and 2008 IASE Round Table Conference. Monterrey: ICMI and IASE. Online: www.stat.auckland.ac.nz/~iase/publications.

Connor, D., Davies, N., & Holmes, P. (2006). Using real data and technology to develop statistical thinking. In G. Burrill (Ed.), Thinking and reasoning with data and chance: Sixty-eighth yearbook (pp. 185–194). Reston, VA: National Council of Teachers of Mathematics.

Coutinho, C. (2001). Introduction aux situations aléatoires dés le Collège: de la modélisation à la simulation d’expériences de Bernoulli dans l’environnement informatique Cabri-géomètre II. Tese de doutoramento, Universidade de Grénoble.

Dantal, B. (1997). Les enjeux de la modélisation en probabilité. In Enseigner les probabilités au lycée (pp. 57–59). Reims: Commission Inter-IREM.

Falk, R. (1986). Conditional Probabilities: insights and difficulties. In R. Davidson & J. Swift (Eds.), Proceedings of the Second International Conference on Teaching Statistics. (pp. 292–297). Victoria, Canada: International Statistical Institute.

Fisher, R. (1988). Didactics, mathematics, and communication. For the Learning of Mathematics, 8(2), 20–30.

Freudenthal, H. (1972). The ‘Empirical law of large numbers’ or ‘The stability of frequencies’. Educational Studies in Mathematics, 4, 484–490.

Garfi eld, J. B., & Burrill, G. (Eds.) (1997). Research on the Role of Technology in Teaching and Learning Statistics. Minnesota, MN: International Statistical Institute.

Girard, J. C. (1997). Modélisation, simulation et expérience aléatoire. In Enseigner les probabilités au lycée (pp. 73–76). Reims: Commission Inter-IREM.

Godino, J. D., Batanero, C., & Cañizares, M. J. (1997). Azar y probabilidad. Fundamentos didácticos y propuestas curriculares. Madrid: Editorial Síntesis.

Godino, J. D., Font, V., & Wilhelmi, M. R. (2008). Análisis didáctico de procesos de estudio matemático basado en el enfoque ontosemiótico. Publicaciones, 38, 25–48.

Godino, J. D., Recio, A. M., Roa, R., Ruiz, F., & Pareja, J. L. (2006). Criterios de diseño y evaluación de situaciones didácticas basadas en el uso de medios informáticos para el estudio de las matemáticas. Revista Números, 64.

Godino, J. D., Roa, R., Recio, A. M., Ruiz, F., & Pareja, J. L (2006). Analysing teaching and learning process for the law of large numbers: implications of using software in teachers’ education. Proceedings of the Seventh International Conference on Teaching Statistics. Salvador (Bahia), Brazil: International Association for Statistical Education, CD-ROM.

Godino, J. D., Ruiz, F., Roa, R., Pareja, J. L., & Recio, A. M. (2003). Analysis of two internet interactive applets for teaching statistics in schools. Trabalho apresentado em IASE Satellite Conference on Statistics Education and the Internet. Berlin, Germany, 11–12 August, 2003.

Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6, 187–205.

Henry, M. (1997). Notion de modéle et modélization en l’enseignement. In Enseigner les probabilités au lycée (pp. 77–84). Reims: Commission Inter-IREM.

Jolliff e, F. (2007). The changing brave new world of statistics assessment. In B. Phillips & L. Weldon (Eds.), The Proceedings of the ISI/IASE Satellite on Assessing Student Learning in Statistics. The Netherlands, Voorburg: International Statistical Institute, CD-ROM.

Kader, G. (1991). Simulations in mathematics-probability and computing. In D. Vere-Jones (Ed.), Proceedings of the third international conference on teaching statistics (Vol. 1, pp. 178–186). Vooburg: International Statistical Institute.

Konold, C. (1991). Understanding students’ beliefs about probability. In E. von Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 139–156). Dordrecht: Kluwer Academic Publishers.

Lee, H. S., & Hollebrands, K. F. (2008). Preparing to teach data analysis and probability with technology. In C. Batanero, G. Burrill, C. Reading & A. Rossman (Eds.), Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. Proceedings of the ICMI Study 18 and 2008 IASE Round Table Conference. Monterrey: ICMI and IASE. Online: www.stat.auckland.ac.nz/~iase/publications.

Leviatan, T. (2006). On the use of paradoxes in the teaching of probability. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador (Bahia), Brazil: International Association for Statistical Education, CD-ROM.

Lipson, K., Kokonis, S., & Francis, G. (2003). Investigation of students’ experiences with a web-based computer simulation. In L. Weldon & J. Engel (Eds.), Statistics and the Internet. Voorburg: International Statistical Institute, CD-ROM.

Mills, J. D. (2002), Using computer simulation methods to teach statistics: a review of the literature. Journal of Statistics Education 10(1).

Polya, G. (1954). Patterns of Plausible Inference. Princeton: Princeton University Press.

Rubin, A. (2007). Much has changed; little has changed: revisiting the role of technology in statistics education 1992-2007. Technology Innovations in Statistics Education, 1(1). Online: http://repositories.cdlib.org/uclastat/cts/tise/.

Sánchez, E., & Izunza, S. (2006). Meanings’ construction about sampling distributions in a dynamic statistics environment. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador (Bahia), Brazil: International Association for Statistical Education, CD-ROM.

Shaughnessy, J. M. (1992). Research in probability and statistics: reflections and directions. In Douglas A. Grrouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 465–494). New York: Macmillan Publishing Company.

Tversky, A., & Kahneman, D. (1982). Judgment under uncertainty: Heuristics and biases. In D. Kahneman, P. Slovic & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 3–20). Cambridge: Cambridge University Press.

Weldon, L., & Engel, J. (Eds.). (2003). Statistics and the Internet. Voorburg: International Statistical Institute, CD-ROM.

Zieffler, A., & Garfi eld, J. B. (2007). Studying the role of simulation in developing students’ statistical reasoning. In Proceedings of the 56th session of the International Statistical Institute — ISI, Lisboa, 22–29 August 2007. La Haye-Voorburg: ISI — International Statistical Institute. Online: www. stat.auckland.ac.nz/~iase/publications/.

Publicado
2009-12-30
Secção
Artigos