El fenómeno natural number bias: un estudio sobre los razonamientos de los estudiantes en la multiplicación de números racionales


Una de las principales causas de las dificultades de los estudiantes de educación primaria y secundaria con las operaciones con los números racionales se debe al uso inapropiado de su conocimiento de los números naturales. Este fenómeno es conocido como natural number bias. Nuestra investigación tiene como objetivo examinar los niveles de éxito y los razonamientos de los estudiantes desde 5.º de educación primaria hasta 4.º de educación secundaria cuando resuelven tareas de multiplicación de un número natural por un racional. Los participantes fueron 438 estudiantes españoles de educación primaria y secundaria. Los resultados muestran porcentajes de éxito menores en tareas donde el conocimiento de los números naturales no es compatible para resolverlas. El análisis de los razonamientos de los estudiantes en estas tareas evidencia la existencia del fenómeno natural number bias en educación primaria y secundaria, pero mostrando su disminución en los últimos años. Estos resultados amplían y apoyan los resultados obtenidos en previas investigaciones cuantitativas.


Não há dados estatísticos.


Behr, M. J., Lesh, R., Post, T., & Silver E. (1983). Rational Number Concepts. In R. Lesh, & M. Landau (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 91-125). New York: Academic Press.

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence: A clinical teaching experiment. Journal of Research in Mathematics Education, 15(5), 323-341.

Broitman, C., Itzcovich, H., & Quaranta, M. E. (2003). La enseñanza de los números decimales: el análisis del valor posicional y una aproximación a la densidad. Revista Latinoamericana de Investigación en Matemática Educativa, 6(1), 5-26.

Centeno, J. (1988). Números decimales: ¿por qué? ¿para qué? Madrid: Síntesis.

Christou, K. (2015). Natural number bias in operations with missing numbers. ZDM. Mathematics Education, 47(5), 747-758.

Christou, K. (2018). The natural number bias in arithmetic operations: the case of the representational form of the numbers. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 267-274). Umeå, Sweden: PME.

DeWolf, M., & Vosniadou, S. (2015). The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 37, 39-49.

DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Magnitude comparison with different types of rational numbers. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 71-82.

Durkin, K., & Rittle-Johnson, B. (2015). Diagnosing misconceptions: Revealing changing decimal fraction knowledge. Learning and Instruction, 37, 21-29.

Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(1), 1-16.

Fischbein, E., Deri, M., Nello, M. S., & Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3-17.

Gelman, R., Cohen, M., & Hartnett, P. (1989). To know mathematics is to go beyond thinking that “fractions aren’t numbers”. In C. Maher; G. Goldin, & R. Davis (Eds.), Proceedings of the eleventh annual meeting of North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 29–67). New Brunswick, NJ: Center for Mathematics, Science, and Computer Education at Rutgers–The State University of New Jersey.

González-Forte, J.M., Fernández, C., & Van Dooren, W. (2018). Gap and congruency effect in fraction comparison. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 459-466). Umeå, Sweden: PME.

Greer, B. (1987). Nonconservation of multiplication and division involving decimals. Journal for Research in Mathematics Education, 18(1), 37-45.

Hartnett, P., & Gelman, R. (1998). Early understandings of numbers: Paths or barriers to the construction of new understandings? Learning and Instruction, 8(4), 341-374.

Hiebert, J., & Wearne, D. (1985). A model of students' decimal computation procedures. Cognition and Instruction, 2(3-4), 175-205.

Kerslake, D. (1986). Fractions: Children's Strategies and Errors. A Report of the Strategies and Errors in Secondary Mathematics Project. Windsor, England: NFER-NELSON Publishing Company.

Kieren, T. E. (1992). Rational and fractional numbers as mathematical and personal knowledge: Implications for curriculum and instruction. In G. Leinhardt, R. Putnam, & R. Hattrup (Eds.), Analysis of Arithmetic for Mathematics Teaching (pp. 323–372). Hillsdale, NJ, USA: Lawrence Erlbaum.

Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201-221.

Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422-441.

Meert, G., Grégoire, J., & Noël, M. P. (2010). Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds? Journal of Experimental Child Psychology, 107(3), 244-259.

Merenluoto, K., & Lehtinen, E. (2002). Conceptual change in mathematics: Understanding the real numbers. In M. Limon, & L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice (pp. 233-258). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Moss, J., & Case, R. (1999). Developing children's understanding of the rational numbers: A new model and an experimental curriculum. Journal for Research in Mathematics Education, 30, 122-147.

Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52.

Nunes, T., & Bryant, P. (2008). Rational numbers and intensive quantities: challenges and insights to pupils’ implicit knowledge. Anales de Psicología/Annals of Psychology, 24(2), 262-270.

Obersteiner, A., Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2016). Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 107, 537-555.

Post, T. R., Cramer, K. A., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching and assessing of rational number concepts. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational Numbers: An Integration of Research (pp. 327–362). Hillsdale, NJ: Erlbaum.

Resnick, I., Rinne, L., Barbieri, C., & Jordan, N. C. (2019). Children’s reasoning about decimals and its relation to fraction learning and mathematics achievement. Journal of Educational Psychology, 111(4), 604-618.

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20, 8-27.

Rinne, L. F., Ye, A., & Jordan, N. C. (2017). Development of fraction comparison strategies: A latent transition analysis. Developmental Psychology, 53(4), 713-730.

Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. Journal of Educational Psychology, 107(3), 909-918.

Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994-2004.

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296.

Stafylidou, S., & Vosniadou, S. (2004). The development of students’ understanding of the numerical value of fractions. Learning and instruction, 14(5), 503-518.

Steinle, V., & Stacey, K. (1998). The incidence of misconceptions of decimal notation amongst students in grades 5 to 10. In C. Kanes, M. Goos, & E. Warren (Eds.), Teaching Mathematics in New Times: Proceedings of the 21st Annual Conference of MERGA (Vol. 2, pp. 548-555). Brisbane, Australia: Mathematics Education Research Group of Australasia.

Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14(5), 453-467.

Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344-355.

Van Dooren, W., Lehtinen, E., & Verschaffel, L. (2015). Unraveling the gap between natural and rational numbers. Learning and Instruction, 37, 1-4.

Van Hoof, J., Degrande, T., Ceulemans, E., Verschaffel, L., & Van Dooren, W. (2018). Towards a mathematically more correct understanding of rational numbers: A longitudinal study with upper elementary school learners. Learning and Individual Differences, 61, 99-108.

Van Hoof, J., Vandewalle, J., Verschaffel, L., & Van Dooren, W. (2015). In search for the natural number bias in secondary school students' interpretation of the effect of arithmetical operations. Learning and Instruction, 37, 30-38.

Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1), 39-56.

Van Hoof, J., Verschaffel, L., & Van Dooren, W. (2017). Number sense in the transition from natural to rational numbers. British Journal of Educational Psychology, 87(1), 43-56.