Promovendo transições processo-objeto e uma compreensão mais profunda no domínio dos números e operações


  • Koeno Gravemeijer Professor Emeritus Eindhoven University of Technology, The Netherlands
  • Geeke Bruin-Muurling Educatieve Dienstverlening Bruin-Muurling, The Netherlands


transição processo-objeto, adição, subtração, compreensão conceptual, técnicas rotineiras


A essência deste artigo é que é necessária uma mudança para um currículo de matemática em que o objetivo principal é o ensino para a compreensão. Antes de discutir o que essa mudança pode acarretar, são apresentados dois argumentos convincentes para fundamentar essa mudança. Um é baseado na investigação, que mostra que a ênfase unilateral nas técnicas induz o ensino de técnicas isoladas, específicas de um tópico, levando a um baixo nível de proficiência. O outro argumento fundamenta-se na observação de que o papel da Matemática na sociedade está a mudar e que, como consequência disso, a importância de dominar as técnicas rotineiras diminui, enquanto a necessidade de compreender a Matemática aumenta. Com base nestes dois argumentos, defende-se uma mudança, de uma ênfase nas técnicas rotineiras para uma ênfase na compreensão. Isto liga-se à tese de que uma compreensão matemática profunda só pode ser alcançada quando os alunos constroem objetos matemáticos reificando processos matemáticos. Para o domínio dos números e operações, a ideia de objetos matemáticos está ligada à noção de articulações em redes de relações numéricas. A parte central do artigo é uma exploração de como seria a educação matemática no domínio dos números e operações se fosse organizada ao longo da linha de transições de processo-objeto e de como as relações numéricas podem ser usadas para resolver o tipo de tarefas numéricas comummente resolvido com procedimentos padrão. Esta exploração termina com o esboço de uma potencial sequência de ensino para a adição e a subtração até 100.


Não há dados estatísticos.


Antonsen, R. (2015, January). Math is the hidden secret to understanding the world. TEdXOslo. [Video file].

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15(5), 323-341.

Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24(4), 294–323.

Bruin-Muurling, G. (2010). The development of proficiency in the fraction domain: Affordances and constraints in the curriculum. Eindhoven, Netherlands: Technische Universiteit Eindhoven.

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. New York, NY: WW Norton & Company.

Byers, B. (1999) The ambiguity of mathematics. In O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 169-176). Haifa: Technion.

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28, 258-277.

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (1997). Mathematizing and symbolizing: The emergence of chains of signification in one first-grade classroom. In D. Kirschner, & J. A. Whitson (Eds.), Situated cognition theory: Social, semiotic, and neurological perspectives (pp. 151-233). Hillsdale, NJ: Erlbaum.

Engeström, Y. (1991). Non scolae sed vitae discimus: Toward overcoming the encapsulation of school learning. Learning and Instruction, 1(3), 243-259.

Fosnot, C. T., & Dolk, M. L. A. M. (2001). Young mathematicians at work. Portsmouth, NH: Heinemann.

Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, Netherlands: Reidel.

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht, Netherlands: Kluwer.

Gravemeijer, K. P. (1991). An instruction-theoretical reflection on the use of manipulatives. In L. Streefland (Ed.), Realistic mathematics education in primary school (pp. 57-76). Utrecht, Netherlands: OW&OC.

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1(2), 155-177.

Gravemeijer, K. (2010) Mathematics education and the information society. In A. Araújo, A. Fernandes, A. Azevedo, & J. F. Rodrigues (Eds.), Educational interfaces between Mathematics and Industry, Conference Proceedings (pp. 243-252). Bedford, MA USA: Comap, Inc.

Gravemeijer, K., Bruin-Muurling, G., Kraemer, J. M., & van Stiphout, I. (2016). Shortcomings of mathematics education reform in the Netherlands: A paradigm case? Mathematical Thinking and Learning, 18(1), 25-44.

Gravemeijer, K., Stephan, M., Lin, F., Julie, C., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal for Science and Mathematics Education, 15(1), 105-123.

Grey, E. M., & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 115-141.

Hoyles, C., Noss, R., Kent, P., & Bakker, A. (2010). Improving mathematics at work: The need for techno-mathematical literacies. New York, NY: Routledge.

Janssen, J., Van der Schoot, F., & Hemker, B. (2005). Balans van het reken-wiskundeonderwijs aan het einde van de basisschool 4. Uitkomsten van de vierde peiling in 2004. [Balance sheet for mathematics education at the end of primary school 4. Outcomes of the fourth survey in 2004]. Periodieke Peiling van het Onderwijsniveau (Vol. 32). Arnhem, Netherlands: Cito Instituut voor toetsontwikkeling.

Kaput, J. J. (1995, May). Long-term algebra reform: Democratizing access to big ideas. In B. LaCampagne, & J. J. Kaput (Eds.), The Algebra Initiative Colloquium (pp. 37-53). Washington, DC: U.S. Department of Education, Office of Educational Research and Improvement.

Kieren, T. E. (1980). Five faces of mathematical knowledge building. Edmonton, Canada: Department of Secondary Education, University of Alberta.

Koestler, A. (1964). The act of creation. London: Picador Pan Books.

Kraemer, J. M. (2011). Oplossingsmethoden voor aftrekken tot 100. [Solution methods for subtraction to 100]. Arnhem: Cito b.v.

Levy, F., & Murnane, R. J. (2005). The new division of labor: How computers are creating the next job market. Princeton, NJ: Princeton University Press.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.

OECD, (2016). "PISA 2015 Mathematics Framework", in PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy, Paris, France: OECD Publishing.

O'Neil, C. (2017). Weapons of math destruction: How big data increases inequality and threatens democracy. New York, NY: Broadway Books.

Resnick, L. B., & Hall, M. W. (1998). Learning organizations for sustainable education reform. Daedalus, 127(4), 89-118.

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.), Advances in instructional psychology (vol. 3, pp. 41-96). Hillsdale, NJ, US: Lawrence Erlbaum Associates.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1-36.

Streefland, L. (1991). Fractions in realistic mathematics education: A paradigm of developmental research. New York, NY: Springer Science & Business Media.

Steffe, L. P., & Cobb, P. (2012). Construction of arithmetical meanings and strategies. New York, NY: Springer Science & Business Media.

Stephan, M., Bowers, J., Cobb, P., & Gravemeijer, K. (2003). Supporting students’ development of measuring conceptions: Analyzing students’ learning in social context. Reston, VA: National Council of Teachers of Mathematics.

van den Brink, F. J. (1989). Realistisch rekenonderwijs aan jonge kinderen [Realistic arithmetic instruction for young children]. Utrecht: OW&OC.

van Hiele, P. V. (1973). Begrip en inzicht.[Understanding and insight]. Purmerend: Muusses.

van Stiphout, I. M. (2011). The development of algebraic proficiency. Eindhoven, Netherlands: Technical University Eindhoven.

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24(3), 335.

Voogt, J., & Pareja, N. (2010). 21st century skills–Discussion paper. Enschede, Netherlands: University of Twente.

Wolfram, C. (2010). Stop teaching calculating, start teaching math. TEDGlobal. [Video file].

Wolfram, C. (2014, February 23). The UK needs a revolution in the way maths is taught. Here's why…, The Guardian.




Como Citar

Gravemeijer, K., & Bruin-Muurling, G. . (2019). Promovendo transições processo-objeto e uma compreensão mais profunda no domínio dos números e operações. Quadrante, 28(2), 6-31. Obtido de