Raciocínio matemático em conjuntos numéricos: Uma investigação no 3.º ciclo
DOI:
https://doi.org/10.48489/quadrante.22879Palavras-chave:
Raciocínio matemático, Álgebra, Números inteiros, Números reaisResumo
Neste artigo analisamos os processos de raciocínio de alunos do 3.º ciclo na resolução de tarefas de cunho algébrico envolvendo propriedades dos conjuntos numéricos Z e R. O quadro conceptual destaca como processos-chave do raciocínio matemático a generalização e a justificação, dando também atenção às representações e à significação. A metodologia é qualitativa, sendo estudados quatro alunos do 7.º e três do 9.º ano com dados recolhidos por entrevistas e observação na sala de aula (ambas com videogravação) e análise documental. Na formulação de generalizações, grande parte dos alunos segue uma abordagem indutiva, generalizando para uma classe de objetos mais ampla as relações observadas em casos particulares. Verificam-se também situações de raciocínios abdutivos. A generalização é mais imediata nos alunos do 9.º ano, que evidenciam por vezes generalizações de cunho dedutivo. A atividade de justificar não é espontânea nos alunos, mas decorrente do questionamento, os alunos mostram ser capazes de fazer justificações baseada em conhecimentos anteriores, em propriedades ou conceitos matemáticos e contraexemplos que refutem uma afirmação.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.