A deteção de simetria na infância como base para o desenvolvimento espacial e nas áreas STEM

Autores

DOI:

https://doi.org/10.48489/quadrante.44327

Resumo

As competências espaciais desenvolvidas precocemente nas crianças predizem o desempenho futuro em Matemática e em áreas STEM. Este estudo investiga a capacidade de crianças de 4 e 5 anos (N = 41) para detetarem transformações de simetria utilizando quadrados mágicos coloridos e simplificados. Analisámos o reconhecimento da invariância em rotações e reflexões através de tarefas visuais e atividades com papel vegetal. Os resultados da ANOVA indicam que a simetria rotacional se manteve estável entre idades, exceto nas rotações de 270°, que evidenciaram melhorias aos cinco anos. Em contraste, a simetria reflexiva revelou ganhos significativos, sobretudo nos eixos vertical e horizontal. Estes resultados sugerem que as tarefas de reflexão exigem um esforço cognitivo superior ao das rotações. Assim, as experiências educativas precoces devem introduzir gradualmente atividades de rotação antes das de reflexão, de modo a consolidar as bases para o desenvolvimento das competências espaciais e do raciocínio sobre simetria. Este estudo contribui ainda para as discussões recentes sobre a relevância pedagógica de aprendizagens espaciais e manipulativas na educação STEM em idades precoces.

Referências

Bansil, A. G., & Yabut, E. V. (2025). Educational Intervention Involving Physical Manipulatives for Improving Grade 7 Learners’ Spatial Reasoning Skills. Journal of Practical Studies in Education, 6(3), 1-9. https://doi.org/10.46809/jpse.v6i3.99

Bornstein, M. H., Mash, C., Arterberry, M. E., & Esposito, G. (2023). Vertical Symmetry Is Special to Infants; Vertical Symmetry in Upright Human Faces More So. Symmetry, 15(9), 1767. https://doi.org/10.3390/sym15091767

Brasili, S., & Piergallini, R. (2021). Symmetry and Invariance: Interdisciplinary Teaching. In G. Darvas (Ed.), Complex Symmetries, (pp. 123-142). Birkhäuser. https://doi.org/10.1007/978-3-030-88059-0_11

Brasili, S., & Piergallini, R. (2022). Introducing Symmetry and Invariance with Magic Squares. In J. Morska & A. Rogerson (Eds.). Proceedings of the 16th International Conference; Building on the Past to Prepare for the Future, King’s College, Cambridge, (pp. 63-68). https://doi.org/10.37626/GA9783959872188.0.013

Crisci, R., Dello Iacono, U., & Ferrara Dentice, E. (2024). Axial Symmetry in Primary School Through a Milieu Based on Visual Programming. Digital Experiences in Mathematics Education, 10, 352–381 https://doi.org/10.1007/s40751-024-00146-9

Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. Developmental Science, 8(1), 1–12.

Frick, A., Ferrara, K., & Newcombe, N. S. (2013). Using a mental transformation task to study spatial thinking in young children. Mind, Brain, and Education, 7(2), 103–112.

Gilligan-Lee, K. A., Bradbury, A., Bradley, C., Farran, E. K., Van Herwegen, J., Wyse, D., & Outhwaite, L. A. (2022). Spatial thinking in practice: A snapshot of teacher's spatial activity use in the early years' classroom. PsyArXiv. https://doi.org/10.31234/osf.io/zqc2x

Glattfelder, J. B. (2019). The Semantics of Symmetry, Invariance, and Structure. Information -Consciousness-Reality. Springer. https://doi.org/10.1007/978-3-030-03633-1_3

He, C., Rathbun, Z., Buonauro, D., Meyerhoff, H. S., Franconeri, S. L., Stieff, M., & Hegarty, M. (2022). Symmetry and spatial ability enhance change detection in visuospatial structures. Memory & Cognition, 50(6), 1186–1200. https://doi.org/10.3758/s13421-022-01332-z

Hu, Q., & Zhang, M. (2019). The development of symmetry concept in preschool children. Cognition, 189, 131–140. https://doi.org/10.1016/j.cognition.2019.03.022

Ives, W., & Rakow, J. (1978). Children’s ability to solve spatial perspective and rotation problems through language and pictures. Technical Report No. 17.

Krüger, M. (2018). Three-Year-Olds solved a mental rotation task above chance level, but no linear relation concerning reaction time and angular disparity presented itself. Journal of Cognition and Development, 19(1), 68–88.

Lipták, J. (2023). Symmetry perception in prospective preschool and primary school teachers: a pilot study. Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach, 17, 169-177. https://doi.org/10.54264/0082

Maresch, G., & Sorby, S. (2022). Perspectives on Spatial Thinking. Journal for Geometry and Graphics, 2021(2), 271-293.

Mix, K., & Cheng, Y. (2012). The relation between space and math: developmental and educational implications. Advances in child development and behaviour, 42, 197–243. https://doi.org/10.1016/b978-0-12-394388-0.00006-x

Pedrett, R., Wiesmann, C. G., & Paunov, S. (2022). Age-related changes in how 3.5- to 5.5-year-olds observe and imagine rotational object motion. Developmental Psychology, 58(4), 679–692.

Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press.

Polyakov, F. (2019). Are cognitive processes encoded through sequences of geometric transformations? SSRN 3479636. http://dx.doi.org/10.2139/ssrn.3479636

Sarama, J., & Clements, D.H. (2009). Early childhood mathematics education research: Learning trajectories for young children (1st ed.). Routledge. https://doi.org/10.4324/9780203883785

Seah, R., & Horne, M. (2019). A learning progression for geometric reasoning. In D. Siemon, A. Barkatsas, & R. Seah, (Eds.), Researching and using progressions (trajectories) in mathematics education (pp. 157–180). Brill Sense. https://doi.org/10.1163/9789004396449_007

Shaw, R., McIntyre, M., & Mace, W. (1974). The role of symmetry in event perception. In R. B. MacLeod & H. L. Pick (Eds.), Perception: Essays in honor of James J. Gibson. Cornell University Press.

Sztuka, I. M., & Kühn, S. (2025). Neurocognitive dynamics and behavioral differences of symmetry and asymmetry processing in working memory: Insights from fNIRS. Scientific Reports, 15, Article 4740. https://doi.org/10.1038/s41598-024-84988-8

Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S., Malykh, S., Plomin, R., & Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17(3), 462–470. https://doi.org/10.1111/desc.12138

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: a meta-analysis of training studies.

Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446

Vallortigara, G. (2006). The evolutionary psychology of left and right: Costs and benefits of lateralization. Developmental Psychobiology, 48(6), 418–427.

Yang, C. N. (1996). Symmetry and Physics. Proceedings of the American Philosophical Society, 140(3), 267–288.

Yang, W., Liu, H., Chen, N., Xu, P., & Lin, X. (2020). Is early spatial skills training effective? A meta-analysis. Frontiers in Psychology, 11, 1938. https://doi.org/10.3389/fpsyg.2020.01938

Zaballa, I., Merino, M., Villarroel, J. D. (2025). Symmetry in children's spontaneous drawing and its progression over time. International Journal of Educational Research Open, 9, 100477. https://doi.org/10.1016/j.ijedro.2025.100477

Downloads

Publicado

2025-12-31

Como Citar

Brasili, S. (2025). A deteção de simetria na infância como base para o desenvolvimento espacial e nas áreas STEM. Quadrante, 34(2), 33–48. https://doi.org/10.48489/quadrante.44327

Edição

Secção

Artigos