A modelação matemática em contextos científicos e no ensino secundário dinamarquês: existem relações?

Autores

DOI:

https://doi.org/10.48489/quadrante.23658

Palavras-chave:

transposição didática, história da matemática, modelação matemática, educação matemática no ensino secundário

Resumo

A modelação matemática e as aplicações têm merecido concordância enquanto argumentos para o ensino da matemática, em vários níveis, nos sistemas educacionais em todo o mundo, sendo igualmente considerados como um elemento central do próprio ensino. Apesar da existência de vários construtos teóricos que descrevem o ensino e a aprendizagem da matemática, continuamos a enfrentar desafios em relação à sua aprendizagem, ao que deve ser aprendido e se isso deverá refletir as práticas científicas. A teoria da transposição didática oferece uma abordagem para analisar a relação entre os saberes académicos e as noções e práticas que deram origem aos saberes ensinados na escola e em que moldes. Neste artigo, analisamos a transposição didática externa por meio de situações de modelação do século XX e o enquadramento da modelação matemática no ensino secundário dinamarquês. Usamos a análise produzida para discutir se as potencialidades são perdidas na transposição e perceber como podem ser efetivadas.

Referências

Abraham, T. (2004). Nicholas Rashevsky’s mathematical biophysics. Journal of the History of Biology, 37, 333-385. https://doi.org/10.1023/B:HIST.0000038267.09413.0d

Ärlebäck, J. B., & Doerr, H. (2015). At the core of modelling: Connecting, coordinating and integrating models. In K. Krainer & N. Vondrová (Eds.) Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 802-808). ERME.

Barquero, B., Bosch, M., & Gascón, J. (2013). The ecological dimension in the teaching of mathematical modelling at university. Recherches en Didactique des Mathématiques, 33(3), 307-338.

Barquero, B., & Jessen, B. E. (2020). Impact of theoretical perspectives on the design of mathematical modelling task. Avances de Investigación en Educación Matemática, 17, 98-113. https://doi.org/10.35763/aiem.v0i17.317

Biehler, R., Kortemeyer, J., & Schaper, N. (2015). Conceptualizing and studying students’ processes of solving typical problems in introductory engineering courses requiring mathematical competences. In K. Krainer & N. Vondrová (Eds.) Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 2060-2066). ERME.

Blomhøj, M. (2011). Modelling competency: Teaching, learning and assessing competencies – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling, International perspectives on the teaching and learning of mathematical modelling (pp. 343-347). Springer International Publishing. https://doi.org/10.1007/978-94-007-0910-2_34

Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. Zentralblatt für Didaktik der Mathematik, 38(2), 163-177. https://doi.org/10.1007/BF02655887

Blum, W., Galbraith, P. L., & Niss, M. (2007). Introduction. In W. Blum, P. L. Galbraith & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 3-32). Springer.

Bosch, M. (2015). Doing research within the anthropological theory of the didactic: The case of school algebra. In S. J. Cho (Ed.) Selected regular lectures from the 12th International Congress on Mathematical Education (pp. 51-69). Springer. https://doi.org/10.1007/978-3-319-17187-6_4

Bosch, M., & Gascón, J. (2014). Introduction to the Anthropological Theory of the Didactic (ATD). In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 67-83). Springer International Publishing. https://doi.org/10.1007/978-3-319-05389-9_5

Boumans, M. (2005). How economists model the world into numbers. Routledge.

Carstensen, J., Frandsen, J., Lorenzen, E. W., & Madsen, A. L. (2018). MAT B2 stx. Systime.

Champernowne, D. G. (1945). A note on J. v. Neumann’s article on ‘A model of economic equilibrium’. Review of Economic Studies, 13, 10-18. https://doi.org/10.1007/978-1-349-15430-2_2

Chevallard, Y. (1985). La transposition didactique: Du savoir savant au savoir enseigné. La Pensée Sauvage.

Chevallard, Y., & Bosch, M. (2020). Didactic transposition in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 214-218). Springer. https://doi.org/10.1007/978-3-030-15789-0_48

Clausen, F., Schomacker, G., & Tolnø, J. (2018). Gyldendals Gymnasiematematik, Grundbog B2. Gyldendal.

Dalmedico, A. D. (2001). History and epistemology of models: Meteorology as a case-study (1946-1963). Archive for History of Exact Sciences, 55, 395-422.

Danish Ministry of Education (2017). Bilag 112, Matematik B–stx, august 2017. https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/stx/matematik-b-stx-august-2017-ua.pdf

Danish Ministry of Education (2020). Matematik A/B/C, stx–Vejledning. https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/stx/matematik-b-stx-august-2017-ua.pdf

Danish Ministry of Education (2021). Uddannelsesstatistik - Tilmelding til ungdomsuddannelserne efter 9. og 10. klasse - Uddannelser under GYM og EUD. https://uddannelsesstatistik.dk/Pages/Reports/1891.aspx

Dore, M., Chakravarty, S., & Goodwin, R. (Eds.). (1989). John von Neumann and modern economics. Clarendon Press.

Frejd, P. (2013). Modes of modelling assessment – A literature review. Educational Studies in Mathematics, 84, 413-438. https://doi.org/10.1007/s10649-013-9491-5

Frejd, P., & Bergsten, C. (2016). Mathematical modelling as a professional task. Educational Studies in Mathematics, 91, 11-35. https://doi.org/10.1007/s10649-015-9654-7

Gelfert, A. (2018). Models in search of targets: Exploratory modelling and the case of turing patterns. In A. Christian, D. Hommen, N. Retzlaff, & G. Schurz (Eds.), Philosophy of Science. (European Studies in Philosophy of Science, vol 9). Springer. https://doi.org/10.1007/978-3-319-72577-2_14

Green, S., & Andersen, H. (2019). Systems science and the art of interdisciplinary integration. Systems Research and Behavioral Science, 36(5), 727-743. https://doi.org/10.1002/sres.2633

Grøn, B., Bruun, B., & Lyndrup, O. (2017). Hvad er matematik? 1. L&R Uddannelse.

Israel, G. (1993). The emergence of biomathematics and the case of population dynamics: A revival of mechanical reductionism and Darwinism. Science in Context, 6, 469-509. http://dx.doi.org/10.1017/S0269889700001484

Jessen, B. E. (2017). Study and research paths at upper secondary mathematics education: A praxeological and explorative study (Doctoral dissertation). Department of Science Education, University of Copenhagen, Copenhagen.

Jessen, B., Otaki, K., Miyakawa, T., Hamanaka, H., Mizoguchi, T., Shinno, Y., & Winsløw, C. (2019). The ecology of study and research paths in upper secondary school: The cases of Denmark and Japan. In M. Bosch, Y. Chevallard, F. J. García, & J. Monaghan (Eds.), Working with the Anthropological Theory of the Didactic in Mathematics Education (pp. 118-138). Routledge.

Keller. E. F. (2002). Making sense of life: Explaining biological development with models, metaphors, and machines. Harvard University Press.

Kjeldsen, T. H. (2017). An early debate in mathematical biology and its value for teaching: Rashevsky's 1934 paper on cell division. The Mathematical Intelligencer, 39(2), 36-45. https://doi.org/10.1007/s00283-016-9700-z

Kjeldsen, T. H. (2019). A multiple perspective approach to History of Mathematics: Mathematical programming and Rashevsky's early development of Mathematical Biology in the twentieth century. In G. Schubring (Ed.), Interfaces between mathematical practices and mathematical education (pp. 143-167). Springer. https://doi.org/10.1007/978-3-030-01617-3_6

Knuuttila, T., & Loettgers, A. (2017). Modelling as indirect representation? The Lotka-Volterra model revisited. The British Journal for the Philosophy of Science, 68(4), 1007-1036. https://doi.org/10.1093/bjps/axv055

Lundberg, A. L., & Kilhamn, C. (2018). Transposition of knowledge: Encountering proportionality in an algebra task. International Journal of Science and Mathematics Education, 16(3), 559-579. https://doi.org/10.1007/s10763-016-9781-3

Moretti, C. (2002). Moving a couch around a corner. The College Mathematics Journal, 33(3), 196-200. https://doi.org/10.1080/07468342.2002.11921940

Niss, M. (2018). National and international curricular use of the competency based Danish “KOM Project”. In Y. Shimizu & R. Vithal (Eds.), Proceedings of the Twenty-Fourth ICMI Study – School Mathematics Curriculum Reforms: Challenges, Changes and Opportunities (pp. 69-76). Tsukuba, Japan.

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314

Rashevsky, N. (1934). Physico-mathematical aspects of cellular multiplication and development. Cold Spring Harbor Symposia on Quantitative Biology, II (pp. 188–198). Cold Spring Harbor. https://doi.org/10.1101/SQB.1934.002.01.024

Shmailov, M. M. (2016). Intellectual pursuits of Nicolas Rashevsky. The queer duck of Biology. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-39922-5

Suurtamm, C., Thompson, D. R., Kim, R. Y., Moreno, L. D., Sayac, N., Schukajlow, S., & Vos, P. (2016). Assessment in mathematics education. In ICME-13 topical surveys (pp. 1-38). Springer International Publishing. https://doi.org/10.1007/978-3-319-32394-7

Swan, M., & Burkhardt, M. (2012). A designer speaks – Designing assessment of performance in mathematics. Educational Designer 2(5), 1-41. http://www.educationaldesigner.org/ed/volume2/issue5/article19

Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558-60.

Volterra, V. (1927 [1978]). Variations and fluctuations in the numbers of coexisting animal species. In F. M. Scudo & J. R. Ziegler (Eds.), The golden age of theoretical ecology: 1923–1940 (pp. 65-236). Springer. https://doi.org/10.1007/978-3-642-50151-7_9

Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together. Journal du Conseil International Pour l’Exploration de la Mer, 3, 3-51.

Von Neumann, J. (1937). Über ein ökonomische Gleichungssystem und eine Werallgemeinerung des Brouwerschen Fixpunktsatzes. In K. Menger (Ed.), Ergebnisse eines mathematischen Kolloquiums, No. 8.

Weintraub, E. R. (1983). On the existence of a competitive equilibrium: 1930-1954. Journal of Economic Literature, 21, 1-39.

Wijayanti, D., & Bosch, M. (2018). The evolution of knowledge to be taught through educational reforms: The case of proportionality. In Y. Shimizu & R. Vithal (Eds.), Proceedings of the Twenty-Fourth ICMI Study – School Mathematics Curriculum Reforms: Challenges, Changes and Oppertunities (pp. 173-180). Tsukuba, Japan.

Downloads

Publicado

2021-12-31

Como Citar

Jessen, B. E., & Kjeldsen, T. H. (2021). A modelação matemática em contextos científicos e no ensino secundário dinamarquês: existem relações?. Quadrante, 30(2), 37–57. https://doi.org/10.48489/quadrante.23658

Edição

Secção

Artigos