Processos de modelação dos alunos envolvidos em trilhos matemáticos
DOI:
https://doi.org/10.48489/quadrante.23699Palavras-chave:
trilhos matemáticos, modelação, aprendizagem extracurricular, matematização, Math & The CityResumo
Nos trilhos matemáticos, os alunos podem estabelecer conexões diretas entre objetos reais e ideias matemáticas. Nestes ambientes de aprendizagem fora da escola, sob a forma de percursos programados, são visitados locais e objetos existentes na cidade ou em redor da escola onde surgem tarefas matemáticas para resolver. As tarefas podem implicar medir ou estimar tamanhos e quantidades relevantes e integrá-los num modelo matemático apropriado. Um indicador da vantagem dos trilhos matemáticos como forma de aprendizagem é a possibilidade que oferecem de desenvolver processos de modelação matemática. Num estudo qualitativo, duas turmas de 11.º ano de Oslo, divididas em cinco grupos de três alunos cada (Ngrupos=10), foram gravadas individualmente em vídeo no decorrer da sua atividade em trilhos matemáticos. O trabalho de cada grupo foi depois analisado em termos dos processos de modelação observáveis. Os resultados de dois grupos num trilho sobre medidas de círculos mostram progressos individuais entre sucessivas fases de modelação enquanto realizavam as tarefas. Os objetos reais foram utilizados, em particular, para várias formas de recolha e validação de dados. O artigo apresenta o estudo e relata os resultados empíricos relativos aos processos de modelação matemática de dois grupos no decurso de trilhos matemáticos.
Referências
Ärlebäck, J., & Albarracín, L. (2019). An extension of the MAD framework and its possible implication for research. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht, the Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME. hal-02408679
Blane, D. C., & Clarke, D. (1984). A mathematics trail around the city of Melbourne. Monash: Monash Mathematics Education Centre, Monash University.
Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood Publishing.
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering, and economics (pp. 260–270). Chichester, UK: Horwood Publishing.
Buchholtz, N. (2017). How teachers can promote Mathematising by means of Mathematical City Walks. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical Modelling and applications - Crossing and researching boundaries in mathematics education (pp. 49–58). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62968-1_4
Buchholtz, N. (2020a). Mathematische wanderpfade unter einer didaktischen perspektive. Mathe-matica Didactica, 43(2), 95–110. Retrieved from http://www.mathematica-didactica.com/Pub/md_2020/2020/ges/md_2020_Buchholtz.pdf
Buchholtz, N. (2020b). The Norwegian study math & the city on mobile learning with math trails. In M. Ludwig, S. Jablonski, A. Caldeira, & A. Moura (Eds.), Research on Outdoor STEM Education in the digiTal Age. Proceedings of the ROSETA Online Conference in June 2020 (pp. 79–86). Münster: WTM. https://doi.org/10.37626/GA9783959871440.0.10
Buchholtz, N. (2021). Modelling and mobile learning with math trails. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in East and West: International perspectives on the teaching and learning of mathematical modelling (pp. 331–340). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-66996-6_28
Buchholtz, N. & Singstad, J. (2021). Learning modelling with mathtrails. In G. A. Nortvedt, N. F. Buchholtz, J. Fauskanger, et al. (Eds.), Bringing Nordic mathematics education into the future. Preceedings of Norma 20. The ninth Nordic Conference on Mathematics Education, Oslo, 2021 (pp. 25–32). Gothenburg, Sweden: NCM & SMDF. Retrieved from http://matematikdidaktik.org/wp-content/uploads/2021/04/NORMA_20_preceedings.pdf
Cahyono, A. N. (2018). Learning mathematics in a mobile app-supported math trail environment. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-93245-3
Cahyono, A. N., & Ludwig, M. (2019). Teaching and learning mathematics around the city supported by the use of digital technology. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), em1654. https://doi.org/10.29333/ejmste/99514
Doerr, H. M., & Pratt, D. (2008). The learning of mathematics and mathematical modeling. In M. K. Heid, & G. W. Blume (Eds.), Research on technology in the teaching and learning of mathematics: Syntheses and perspectives: Mathematics learning, teaching and policy (Vol. 1, pp. 259–285). Charlotte: Information Age.
Freudenthal, H. (1968). Why teach mathematics so as to be useful. Educational Studies in Mathematics, 1, 3–8. https://doi.org/10.1007/BF00426224
Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, The Netherlands: Reidel Publishing.
Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht, The Netherlands: Kluwer.
Greefrath, G. (2009). Schwierigkeiten bei der bearbeitung von modellierungsaufgaben. In M. Neubrand (Ed.), Beiträge zum mathematikunterricht 2009 (pp. 137–140). Münster, Germany: WTM-Verlag.
Greefrath, G. (2010). Didaktik des sachrechnens in der sekundarstufe. Heidelberg, Germany: Springer Spektrum. https://doi.org/10.1007/978-3-8274-2679-6
Greefrath, G., & Vorhölter, K. (Eds.) (2016). Teaching and learning mathematical modelling: Approaches and developments from German speaking countries. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-45004-9_1
Gurjanow, I., Zender, J., & Ludwig, M. (2020). MathCityMap: Popularizing mathematics around the globe with math trails and smartphones. In M. Ludwig, S. Jablonski, A. Caldeira, & A. Moura (Eds.), Research on Outdoor STEM Education in the digiTal Age. Proceedings of the ROSETA Online Conference in June 2020 (pp. 103–109). Münster, Germany: WTM.
Hagena, M. (2019). Einfluss von größenvorstellungen auf modellierungskompetenzen. Empirische untersuchung im kontext der professionalisierung von lehrkräften. Heidelberg, Germany: Springer Spektrum. https://doi.org/10.1007/978-3-658-23115-6
Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 110–119). Chichester, UK: Horwood Publishing. https://doi.org/10.1533/9780857099419.3.110
Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–293). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6540-5_23
Kuch, A. (2018). Wie viel schafft die Fähre? Schätzend zu näherungswerten gelangen. Mathematik Lehren, 207, 20–24.
Ludwig, M., & Jablonski, S. (2019) Doing math modelling outdoors: A special math class activity designed with MathCityMap. In J. Domenech, P. Merello, E. Poza, D. Blazquez, & R. Peña-Ortiz (Eds.), Fifth International Conference on Higher Education Advances (HEAd’19) Universitat Politecnica de Valencia (pp. 901–909). Valencia, Spain: Editorial Universitat Politècnica de València. http://dx.doi.org/10.4995/HEAd19.2019.9583
Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solution. Klagenfurt. Retrieved from http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
Miaux, S., Drouin, L, Morencz, P., Paquin, S., & Jacquemin, C. (2010). Making the narrative walk-in-real-time methodology relevant for public health intervention: Towards an integrative approach. Health & Place, 16(6), 1166–1173. https://doi.org/10.1016/j.healthplace.2010.08.002
Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh et al. (Eds.), Modelling students’ mathematical modelling competencies (pp. 43–59). New York, NY: Springer. https://doi.org/10.1007/978-1-4419-0561-1_4
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P.L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York, NY: Springer. https://doi.org/10.1007/978-0-387-29822-1_1
Petiteau, J. Y., & Pasquier, E. (2001). La méthode des itinéraires: récits et parcours. In M. Grosjean & J.-P. Thibaud (Eds.), L’espace urbain en methods (pp. 63–77). Marseille, France: Parenthèses.
Shoaf, M. M., Pollack, H., & Schneider, J. (2004). Math trails. Lexington, MA: COMAP.
Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction – The Wiskobas project. Dordrecht, The Netherlands: Reidel Publishing.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.