Tecnologia e modelação matemática: enfrentando desafios, abrindo portas
DOI:
https://doi.org/10.48489/quadrante.23710Palavras-chave:
modelação, mundo real, simulação, dinâmica do sistema, tecnologiaResumo
No que se refere a atingir objetivos educacionais, a tecnologia tem impacto na natureza do desempenho matemático, tanto no seu alcance como no seu propósito. Fazemos uma revisão da utilização da tecnologia, real e potencial, no âmbito da modelação matemática, entendida como resolução de problemas do mundo real. Consideramos o seu papel ao longo do processo completo de modelação, bem como a sua forma de utilização no contexto de problemas concretos, ilustrando situações em que a utilização inadequada da tecnologia provoca perturbações na atividade de modelação, bem como outras em que o seu uso criterioso pode aumentar o poder e a acessibilidade dos modelos para novos públicos. Em seguida, demonstramos como a tecnologia permite o acesso a modelos que ficariam indisponíveis se apenas fossem usados métodos manuais de resolução. Neste caso, a não linearidade e a simultaneidade que têm lugar entre as relações do modelo indicam que as equações do modelo têm de ser primeiro desenvolvidas, parametrizadas e, em seguida, resolvidas por simulação. Os métodos fornecidos pela Teoria de Sistemas Dinâmicos são assim ilustrados, considerando o problema de fornecer água potável a uma população que cresce num ambiente que se torna mais quente, com reservas de água limitadas.
Referências
Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a refection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274. https://doi.org/10.1023/A:1022103903080
Australian Curriculum Assessment and Reporting Authority. (2017). Curriculum. Retrieved from https://www.acara.edu.au/curriculum
Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking. New York: Springer. https://doi.org/10.1007/b105001
Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM Mathematics Education, 52, 1223–1242. https://doi.org/10.1007/s11858-020-01196-0
Damkjaer, S., & Taylor, R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513-531. https://doi.org/10.1007/s13280-017-0912-z
Doerr, H. & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41, 143-163. https://doi.org/10.1023/A:1003905929557
Fisher, D. M. (2017). Modeling dynamic systems: Lessons for a first course (3rd ed.). Lebanon, New Hamp-shire: isee systems, inc.
Fisher, D. M. (2018). Reflections on teaching system dynamics modeling to secondary school students for over 20 years. Systems Journal Special Edition: Theory and Practice of System Dynamics Modelling, 6(12). https://doi.org/10.3390/systems6020012
Fisher, D. M. (2021) Global understanding of complex systems problems can start in pre-college education. In F. Leung, G. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in East and West. International perspectives on the teaching and learning of mathematical modelling (pp. 35-44). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_3
Forrester, J. W. (1969). Principles of systems. Cambridge, Massachusetts: Wright-Allen Press.
Galbraith, P. (2010). Senior mathematical modelling and applications. Melbourne: MacMillan Education.
Galbraith, P. (2020). Modelling around and about COVID-19. Australian Mathematics Education Journal, 2(2), 33-39.
Galbraith, P., & Fisher, D. M. (2021). System dynamics: Adding a string to the modelling bow In F. Leung, G. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in East and West. Interna-tional perspectives on the teaching and learning of mathematical modelling (pp. 619-629). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_52
Galbraith, P., & Holton, D. (2018). Mathematical modelling: A guidebook for teachers and teams. Melbourne: ACER. Retrieved from https://www.immchallenge.org.au/files/IM2C-Teacher-and-student-guide-to-mathematical-modelling.pdf
Galbraith, P., Stillman G., Brown J., & Redmond T. (2018). A modelling challenge: Students modelling problems of their choice. In S. Schukajlow & W. Blum (Eds.), Evaluierte lernumgebungen zum modellieren. Realitätsbezüge im mathematikunterricht (pp. 193-214). Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-20325-2_10
Garfunkel, S., Niss, M., & Brown, J. (2021). Opportunities for modelling: An extra-curricular challenge. In F. Leung, G. Stillman, G. Kaiser, & K. Wong (Eds.), Modelling education in East and West. International perspectives on the teaching and learning of mathematical modelling (pp. 362-375). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_30
Geiger, V. (2005). Master, servant, partner, and extension-of-self: A finer grained view of this taxonomy. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia: Building connections, theory, research and practice (pp. 369-376). MERGA.
Geiger, V., Faragher, R., & Goos, M. (2010). Cas-enabled technologies as ‘agents provocateurs’ in teaching and learning mathematical modelling in secondary school classrooms. Mathematics Education Research Journal, 22, 48–68. https://doi.org/10.1007/BF03217565GGRG
Geiger, V., Galbraith, P., Niss, M., & Delzoppo, C. (2021). Developing a task design and implementation framework for fostering mathematical modelling competencies. Educational Studies in Mathematics. https://doi.org/10.1007/s10649-021-10039-y
Goos, M., Galbraith, P., Renshaw, P., & Geiger, V. (2003). Perspectives on technology mediated learning in secondary school mathematics classrooms. Journal of Mathematical Behavior, 22(1), 73-89. https://doi.org/10.1016/S0732-3123(03)00005-1
Greefrath, G., Siller, H. S., & Weitendorf, J. (2011). Modelling considering the influence of technology. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.) Trends in teaching and learning of mathematical modelling (pp. 315–329). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0910-2_32
Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. The International Journal of Computers for Mathematical Learning, 3(3), 195–227. https://doi.org/10.1023/A:1009892720043
Jankvist, U.T., Misfeldt, M., & Aguilar, M.S. (2019). What happens when CAS procedures are objectified? – The case of “solve” and “desolve”. Educational Studies in Mathematics 101, 67–81. https://doi.org/10.1007/s10649-019-09888-5
Julie, C. (2002). Making relevance relevant in mathematics teacher education. Proceedings of the second International Conference on the Teaching of Mathematics at the Undergraduate Level [CD]. Hoboken, NJ: Wiley.
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(3), 302–310. https://doi.org /10.1007/BF02652813
Leduc, M., Matthews, H. D., & de Elia, R. (2015). Quantifying the limits of a linear temperature response to cumulative CO2 emissions. Journal of Climate, 28, 9955–9968. https://doi.org/10.1175/JCLI-D-14-00500.1
Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. London: Pan Books Ltd.
Meadows, D. H., Meadows, D. L., & Randers, J. (1992). Beyond the limits: Confronting global collapse, envisaging a sustainable future. Vermont: Chelsea Green Publishing.
Molina-Toro, J. F., Rendon-Mesa, P. A., & Villa-Ochoa, T. (2019). Research trends in digital technologies and modeling in mathematics education. EURASIA Journal of Mathematics, Science and Technology Education, 15(8), 1-13. https://doi.org/10.29333/ejmste/108438
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC: Authors.
Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. Haines, & A. Hurford. (Eds.), Modeling students’ mathematical competencies. ICMTA 13 (pp. 43-59). Boston, Massachusetts: Springer.
Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Oxford: Routledge.
OECD (2021). Description of mathematical literacy for 2021. Retrieved from https://pisa2021-maths.oecd.org/
Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165 - 180). Springer Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_18
Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. In J. Watson & K. Beswick (Eds.), Mathematics: essential research, essential practice. Proceedings of the 30th annual conference of the Mathematics Research Group of Australasia (Vol. 2, pp. 688-707). Adelaide: MERGA2007.
Treilibs, V., Burkhardt, H., & Low, B. (1980). Formulation processes in mathematical modelling, Nottingham: Shell Centre Publications.
Villarreal, M. E., Esteley, C. B., & Smith, S. (2018). Pre-service teachers’ experiences within modelling scenarios enriched by digital technologies. ZDM - Mathematics Education, 50(1-2), 327-341. https://doi.org/10.1007/s11858-018-0925-5
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.