Sobre a influência do conhecimento acerca dos processos ideais-típicos de modelação nas rotas de modelação dos indivíduos
DOI:
https://doi.org/10.48489/quadrante.23719Palavras-chave:
rotas de modelação individuais, estrutura dos processos de modelação, MAI-Tool, conhecimento sobre processos de modelaçãoResumo
Trabalhar em tarefas de modelação matemática é um desafio para os estudantes. Vários estudos demonstraram que o conhecimento sobre a modelação matemática, a um meta-nível, tem um efeito positivo sobre o processo de modelação. No entanto, os estudantes não utilizam estratégias de resolução, intencional e conscientemente, ao trabalharem em tarefas de modelação. No âmbito do nosso estudo, pretende-se saber se, e em que medida, o conhecimento sobre os processos ideais-típicos de modelação tem um efeito sobre a estrutura dos processos de resolução dos indivíduos. Os indivíduos adquiriram esse conhecimento, durante o nosso estudo, no contexto de um ensino que incluiu informação sobre o processo de modelação, tal como, por exemplo, o ciclo de modelação e um plano de resolução. Neste artigo, a estrutura das rotas de modelação individuais dos estudantes que receberam instrução sobre os processos de modelação é comparada com a dos estudantes que não receberam tal instrução. Os dados do estudo foram recolhidos, apresentados e analisados, utilizando a Ferramenta de Modelação-Atividade-Interação (MAI-Tool), que também é aqui apresentada. O MAI-Tool é uma ferramenta recentemente desenvolvida com base em métodos quantitativos para captar e analisar estruturas e padrões de processos de modelação com mais detalhe do que com métodos previamente conhecidos.
Referências
Ärlebäck, J. B., & Albarracin, L. (2019). An extension of the MAD framework and its possible implication for research. Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht, Netherlands. https://hal.archives-ouvertes.fr/hal-02408679/document
Beckschulte, C. (2019). Mathematisches modellieren mit lösungsplan: Eine empirische untersuchung zur entwicklung von modellierungskompetenzen. Springer. https://doi.org/10.1007/978-3-658-27832-8
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodo-logical), 57(1), 289-300. https://www.jstor.org/stable/i316032
Blum, W. (1996). Anwendungsbezüge im mathematikunterricht – Trends und perspektiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und perspektiven (pp. 15-38). Hölder-Pichler-Tempsky.
Blum, W. (2007). Mathematisches modellieren – zu schwer für schüler und lehrer?. In Beiträge zum mathematikunterricht (pp. 3-12). WTM.
Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education - Intellectual and attitudinal challenges (pp. 73-96). Springer. https://doi.org/10.1007/978-3-319-12688-3_9
Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
Blum, W., & Leiß, D. (2006). “Filling up” – The problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In M. Bosch (Ed.), CERME-4 – Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1623-1633). Sant Feliu de Guíxols, Spain.
Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM – The International Journal for Mathematics Education, 38(2), 86–95. https://doi.org/10.1007/BF02655883
Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics. ICTMA12 (pp. 260-270). Horwood Publishing.
Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners’ modeling behavior. Journal für Mathematik-Didaktik, 31(1), 99-118. https://doi.org/10.1007/s13138-010-0009-8
Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen modellierens. Kognitive analysen zu modellierungsprozessen im mathematikunterricht. Vieweg+Teubner.
Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling – in school and teacher education. Springer. https://doi.org/10.1007/978-3-319-68072-9
Brand, S., & Vorhölter, K. (2018). Holistische und atomistische vorgehensweisen zum erwerb von modellierungskompetenzen im mathematikunterricht. In S. Schukajlow & W. Blum (Eds.), Evaluierte lernumgebungen zum modellieren (pp. 119-142). Springer.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates.
Döring, N., & Bortz, J. (2016). Forschungsmethoden und evaluation. In den sozial- und humanwissenschaften. Springer. https://doi.org/10.1007/978-3-642-41089-5
Flavell, H. J. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34(10), 906-911.
Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations and interpretation. Journal of Experimental Psychology: General, 141(1), 2-18. https://doi.org/10.1037/a0024338
Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143-162. https://doi.org/10.1007/BF02655886
Greefrath, G. (2014). Lösungshilfen für modellierungsaufgaben. In I. Bausch, G. Pinkernell, & O. Schmitt (Eds.), Unterrichtsentwicklung und kompetenzentwicklung – Festschrift für regina bruder (pp. 131-140). WTM.
Greefrath, G. (2018). Anwendungen und modellieren im mathematikunterricht. Didaktische perspektiven zum sachrechnen in der sekundarstufe. Springer. https://doi.org/10.1007/978-3-662-57680-9
Greefrath, G., Kaiser, G., Blum, W., & Borromeo Ferri, R. (2013). Mathematisches modellieren – Eine einführung in theoretische und didaktische hintergründe. In R. Borromeo Ferri, G. Greefrath, & G. Kaiser (Eds.), Mathematisches modellieren für schule und hochschule. Theoretische und didaktische Hintergründe (pp. 11-37). Springer. https://doi.org/10.1007/978-3-658-01580-0_1
Kaiser, G., Blum, W., Borromeo Ferri, R. & Greefrath, G. (2015). Anwendungen und modellieren. In R. Bruder et al. (Eds.), Handbuch der mathematikdidaktik (pp. 357-383). Springer. https://doi.org/10.1007/978-3-642-35119-8_13
Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–293). Springer. https://doi.org/10.1007/978-94-007-6540-5_23
Kolbe, M., & Boos, M. (2018). Observing group interaction: The benefits of taking group dynamics seriously. In E. Brauner, M. Boos, & M. Kolbe (Eds.), The Cambridge handbook of group interaction analysis (pp. 68–85). Cambridge University Press. https://doi.org/10.1017/9781316286302.005
Leuders, T. (2007). Wenn es mathematikern zu bunt wird: Färbeprobleme. In S. Hußmann & B. Lutz Westphal (Eds.), Kombinatorische optimierung erleben. In schule und unterricht (pp. 131-170). Vieweg.
Maaß, K. (2004). Mathematisches modellieren im unterricht. Ergebnisse einer empirischen studie. Franzbecker.
Matos, J. F., & Carreira, S. (1997). The quest for meaning in students’ mathematical modelling activities. In S. K. Houston, W. Blum, I. Huntley, & N. T. Neill (Eds.), Teaching and learning in mathematical modelling (pp. 63-75). Albion.
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3-32). Springer.
Pollak, H. (1979). The interaction between mathematics and other school subjects. In UNESCO (Eds.), New trends in mathematics teaching IV (pp. 232-248). UNESCO.
Ruzika, S., & Schneider, L. (2020). Modellierungsprozesse erfassen, darstellen und analysieren. In H-S. Siller, W. Weigel, & J. F. Wörler (Eds.), Beiträge zum mathematikunterricht 2020 (pp. 1201-1204). WTM.
Schukajlow, S., Kolter, J., & Blum, W. (2015). Scaffolding mathematical modelling with a solution plan. Zentralblatt für Didaktik der Mathematik, 47, 1241-1254. https://doi.org/10.1007/s11858-015-0707-2
Stillman, G. (2004). Strategies employed by upper secondary students for overcoming or exploiting conditions affecting accessibility of applications tasks. Mathematics Education Research Journal, 16(1), 41-71. https://doi.org/10.1007/BF03217390
Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165-180). Springer. https://doi.org/10.1007/978-94-007-0910-2_18
Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36, 157-189. https://doi.org/10.1023/A:1003246329257
Strauß, A., & Corbin, J. (1996). Grounded theory. Grundlagen qualitativer sozialforschung. Beltz.
Vorhölter, K., & Kaiser, G. (2016). Theoretical and pedagogical considerations in promoting students’ metacognitive modeling competencies. In C. R. Hirsch (Ed.), Mathematical modeling and modeling mathematics (pp. 273-280). National Council of Teachers of Mathematics.
Vorhölter, K., Krüger, A., & Wendt, L. (2019). Metacognition in mathematical modelling – An overview. In S. A. Chamberlin, & B. Sriraman (Eds.), Affect in mathematical modeling (pp. 29-51). Springer. https://doi.org/10.1007/978-3-030-37673-4_27
Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 427-437). Springer. https://doi.org/10.1007/978-94-007-0910-2_42
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.