Ensino e aprendizagem de combinatória no ensino secundário: uma abordagem de modelação baseada na Teoria Antropológica do Didático

Autores

DOI:

https://doi.org/10.48489/quadrante.23878

Palavras-chave:

combinatória, modelação matemática, ensino secundário, Percursos de Estudo e Pesquisa, praxeologias de modelação

Resumo

Este artigo centra-se no papel da combinatória como ferramenta de modelação para investigar e estudar diferentes situações que envolvem contagem e simulação com objetos reais. Com base na Teoria Antropológica do Didático, a nossa investigação apresenta a conceção e implementação de um Percurso de Estudo e Pesquisa (PEP) para o ensino secundário obrigatório na área da combinatória. O PEP parte de uma questão geradora sobre a descoberta do cadeado (entre vários) que é mais seguro. Os resultados empíricos correspondem à segunda implementação do PEP com estudantes do 10.º ano de uma escola catalã com uma longa experiência de inovação educacional. Distinguimos duas fases de modelação. Primeiro, analisamos o papel da combinatória no processo de modelação que emergiu da situação problemática inicial dos cadeados. Consideramos a construção de modelos pelos alunos para representar as suas explorações através da interação com os cadeados e a importância de nomear e definir as variáveis e as relações utilizadas para caracterizar os tipos de cadeados. Em segundo lugar, analisamos a simulação e validação destes modelos combinatórios elementares utilizados pelos estudantes e a sua generalização para explorar outros sistemas para além dos cadeados.

Referências

Barquero, B. (2009). Ecología de la modelización matemática en la enseñanza universitaria de las matemáticas (Doctoral dissertation). Universitat Autònoma de Barcelona. https://ddd.uab.cat/record/63192

Barquero, B., & Bosch, M. (2015). Didactic Engineering as a research methodology: From fundamental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 249-272). Springer.

Barquero, B., Bosch, M., & Gascón, J. (2019). The unit of analysis in the formulation of research problems: The case of mathematical modelling at the university level. Research in Mathematics Education, 21(3), 314-330. https://doi.org/10.1080/14794802.2019.1624602

Barquero, B., Bosch, M., & Wozniak, F. (2019). Modelling praxeologies in teacher education: the cake box. In U.T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the CERME 11 (pp. 1144-1152). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.

Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 181-199. https://doi.org/10.1023/A:1002954428327

Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example Sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics. ICTMA 12 (pp. 222–231). Horwood.

Borromeo Ferri, R. (2007). Modeling from a cognitive perspective: Individual modeling routes of pupils. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling: Education, engineering and economics (pp. 260-270). Horwood.

Bosch, M. (2018). Study and Research Paths: A model for inquiry. Proceedings of the International Congress of Mathematics (pp. 4001-4022). ICM.

Chevallard, Y. (1989). Le passage de l’arithmétique a l’algébrique dans l’enseignement des mathématiques au collège – Deuxième partie. Perspectives curriculaires: la notion de modélisation [The transition between arithmetic and algebra in the teaching of mathematics at secondary school level – Second part. Curricula approaches: The notion of modelling]. Petit x, 19, 45-75.

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique [The analysis of teaching practices from the anthropological theory of the didactic]. Recherches en Didactique des Mathématiques, 19(2), 221-266.

Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (ed), Proceedings of CERME 4 (pp. 21-30). Fundemi IQS.

Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm. In S.J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 173-187). Springer. https://doi.org/10.1007/978-3-319-12688-3_13

DeGuire, L. (1991). Permutations and combinations: A problem solving approach for middle school students. In M. J. Kenny & C. R. Hirsh (Eds.), Discrete Mathematics across the curriculum, K-12: 1991 Yearbook (pp. 55-58). National Council of Teachers of Mathematics.

Dubois, J. G. (1984). Une systematique des configurations combinatoires simples [A system of simple combinatorial configurations]. Educational Studies in Mathematics, 15 (1), 37-57. https://doi.org/10.1007/BF00380438

English, L. D. (1993). Children’s’ strategies in solving two- and three-dimensional combinatorial problems. Journal for Research in Mathematics Education, 24(3), 255-273.

English, L. D. (2005). Combinatorics and the development of children’s combinatorial reasoning. In G.A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 121-141). Kluwer Academic Publishers.

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM Mathematics Education, 38(2), 143-162. https://doi.org/10.1007/BF02655886

García, F. J., Gascón, J., Higueras, L. R., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM Mathematics Education, 38(3), 226-246. https://doi.org/10.1007/BF02652807

Jessen, B., Otaki, K., Miyakawa, T., Hamanaka, H., Mozoguchi, T., Shinno, M., & Winsløw, C. (2020). The ecology of study and research paths in upper secondary school. In M. Bosch, Y. Chevallard, F. J. García, & J. Monaghan (Eds.), Working with the Anthropological Theory of the Didactic in mathematics education: A comprehensive Casebook (pp. 118-138). Routledge. https://doi.org/10.4324/9780429198168

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. ZDM Mathematics Education, 38, 302-310. https://doi.org/10.1007/BF02652813

Kapur, J. N. (1970). Combinatorial analysis and school mathematics. Educational Studies in Mathematics, 3, 111-127. https://www.jstor.org/stable/3481871

Lockwood, E. (2013). A model of students’ combinatorial thinking. Journal of Mathematical Behavior, 32, 251-265. https://doi.org/10.1016/j.jmathb.2013.02.008

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314

Perrenet, J., & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of Mathematical Modelling and Application, 1(6), 3-21.

Roa, R., Batanero, C., & Godino, J. (2003). Estrategias generales y estrategias aritméticas en la resolución de problemas combinatorios. Educación Matemática 15(2), 5-25.

Serrano, L., Bosch, M., & Gascón, J. (2010). Fitting models to data. The mathematising step in the modelling process. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 2185-2196). Institut National de Recherche Pédagogique and ERME.

Wozniak, F. (2012). Des professeurs des écoles face à un problème de modélisation: Une question d’équipement praxéologique. Recherches en Didactique des Mathématiques, 32(1), 7–55.

Downloads

Publicado

2021-12-31

Como Citar

Vásquez, S. ., Barquero, B., & Bosch, M. (2021). Ensino e aprendizagem de combinatória no ensino secundário: uma abordagem de modelação baseada na Teoria Antropológica do Didático. Quadrante, 30(2), 200–219. https://doi.org/10.48489/quadrante.23878

Edição

Secção

Artigos