Quem beneficia das tarefas de modelação combinadas com experiências? Efeitos das características afetivas dos alunos e das situações de aprendizagem no interesse situacional e no sentimento de competência

Autores

DOI:

https://doi.org/10.48489/quadrante.31452

Palavras-chave:

modelação, experiências, interesse, sentimento de competência, afeto, função exponencial

Resumo

A modelação é uma competência matemática fundamental. No entanto, investigações anteriores encontraram resultados inconsistentes relativamente à motivação dos alunos para a modelação. Uma abordagem frequentemente discutida para promover a motivação dos alunos é combinar tarefas de modelação com experiências científicas. Nesta contribuição, analisamos quais os alunos que beneficiam de tais tarefas - no sentido de estados afetivos benéficos como o interesse situacional e sentimentos de competência - tendo em conta diferentes situações de aprendizagem relacionadas com tarefas de modelação com e sem experimentação, bem como as características afetivas dos alunos, como o interesse individual e o autoconceito matemático. Os nossos resultados indicam que os estados afetivos dos alunos dependem tanto da situação de aprendizagem específica como das suas características afetivas. Em particular, no caso do interesse situacional, existe uma interação entre a situação de aprendizagem e o interesse individual: os alunos com baixo interesse individual pela matemática relatam maior interesse situacional na realização de experiências, mas não na modelação dos seus dados experimentais, enquanto os alunos com elevado interesse individual estão mais interessados na modelação sem experiências. Discutimos as implicações teóricas e práticas destes resultados.

Referências

Arens, A. K., Trautwein, U., & Hasselhorn, M. (2011). Erfassung des Selbstkonzepts im mittleren Kindesalter: Validierung einer deutschen Version des SDQ I [Measuring self-concept in middle childhood: validation of a German version of the SDQ I]. Zeitschrift für Pädagogische Psychologie, 25, 131-144. https://doi.org/10.1024/1010-0652/a000030

Bednorz, D., Huget, J., & Kleine, M. (2021). Fördermöglichkeiten von Motivation, Interesse und Emotio-nen durch Modellierungsaufgaben [Fostering motivation, interest and emotions with modelling tasks]. mathematica didactica, 44(1), 1–20. https://doi.org/10.18716/ojs/md/2021.1212

Beumann, S. (2016). Versuch´s doch mal: Eine empirische Untersuchung zur Förderung von Motivation und Interesse durch mathematische Schülerexperimente [Just try it: an empirical study concerning the promotion of motivation and interest with mathematical experiments]. (Doctoral Dissertation) Ruhr-Universität Bochum. https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/year/2017/docId/5122

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling: Education, engineering, and economics (pp. 222–231). Horwood. https://doi.org/10.1533/9780857099419.5.221

Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15(1), 1–40. https://doi.org/10.1023/A:1021302408382

Carreira, S., & Baioa, A. M. (2018). Mathematical modelling with hands-on experimental tasks: On the student’s sense of credibility. ZDM – Mathematics Education, 50(1–2), 201–215. https://doi.org/10.1007/s11858-017-0905-1

Czocher, J. A. (2018). How does validating activity contribute to the modeling process? Educational Studies in Mathematics, 99(2), 137–159. https://doi.org/10.1007/s10649-018-9833-4

Deci, E. L., & Ryan, R. M. (2000). The “What” and “Why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227–268. https://doi.org/10.1207/S15327965PLI1104_01

Di Martino, P. (2019). Chapter 9: The Complex Relationship Between Mathematical Modeling and Attitude Towards Mathematics. In S. A. Chamberlin & B. Sriraman (Eds.), Affect in Mathematical Modeling (pp. 219–234). Springer. https://doi.org/10.1007/978-3-030-04432-9_14

Engel, J. (2011). Datenanalyse und Geometrie. Vom Zusammenspiel theoriegeleiteter und daten¬bezo¬ge-ner Modellierungen [Data-analysis and geometry. The interplay between theory based and data-driven modelling]. mathematica didactica, 34, 5–19. https://doi.org/10.18716/ojs/md/2011.1098

Galbraith, P. L., Stillman, G. A., & Brown, J. (2013). Turning ideas into modeling problems. In R. Lesh, P. L. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 133–144). Springer. https://doi.org/10.1007/978-94-007-6271-8_11

Ganter, S. (2013). Experimentieren - ein Weg zum Funktionalen Denken: Empirische Untersuchung zur Wirkung von Schülerexperimenten [Experiments – a way to functional thinking: an empirical study concerning the effect of student experiments]. Verlag Dr. Kovac.

Geisler, S., & Rach. S. (in press). Students’ situational interest concerning modelling tasks with experiments. In S. Beumann & S. Geisler (Eds.). Experimentieren im Mathematikunterricht - Aktuelle Ergebnisse aus Forschung und Praxis. WTM-Verlag.

Geisler, S. (accepted). Mathematical modelling with experiments: Students’ sense of validation and its relevance. Rivista di Matematica della Università di Parma.

Guderian, P., & Priemer, B. (2008). Interessenförderung durch Schülerlaborbesuche [Fostering interest by visiting out-of-school labs]. Physik Und Didaktik in Schule Und Hochschule, 7, 27–36.

Habig, S., Blankenburg, J., van Vorst, H., Fechner, S., Parchmann, I., & Sumfleth, E. (2018). Context characteristics and their effects on students’ situational interest in chemistry. International Journal of Science Education, 40(10), 1154-1175. https://doi.org/10.1080/09500693.2018.1470349

Halverscheid, S. (2008). Building a local conceptual framework for epistemic actions in a modelling environment with experiments. ZDM–The International Journal on Mathematics Education, 40(2), 225–234. https://doi.org/10.1007/s11858-008-0088-x

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127. https://doi.org/10.1207/s15326985ep4102_4

KMK (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife [National Standards for Mathematics]. https://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf

Krapp, A. (2005). Basic needs and the development of interest and intrinsic motivational orientations. Learning and Instruction, 15(5), 381–395. https://doi.org/10.1016/j.learninstruc.2005.07.007

Krapp, A. (2007). An educational-psychological conceptualisation of interest. International Journal for Educational and Vocational Guidance, 7(1), 5–21. https://doi.org/10.1007/s10775-007-9113-9

Krawitz, J., & Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM - Mathematics Education, 50(1–2), 143–157. https://doi.org/10.1007/s11858-017-0893-1

Krug, A., & Schukajlow, S. (2013). Problems with and without connection to reality and students’ task-specific interest. In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3) (pp. 209–216). IGPME.

Ludwig, M. & Oldenburg, R. (2007). Lernen durch Experimentieren. Handlungsorientierte Zugänge zur Mathematik [Learning through Experiments]. mathematik lehren 141, 4–11.

National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). Common core state standards for mathematics. Council of Chief State School Officers.

Niss, M. (1994). Mathematics in Society. In R. Biehler, R. W. Scholz, R. Sträßer, & B. Winkelmann (Eds.). Didactics of Mathematics as a Scientific Discipline (pp. 367–378). Kluwer Academic Publishers.

Ochsen, S., Bernholt, S., Bernholt, A., & Parchmann, I. (2021). Eine Mikroanalyse von Chemieunterricht-Einsatz und Perzeption von Triggern für situationales Interesse [A Microanalysis of Chemistry Lessons – Use and Perception of Triggers for Situational Interest]. Zeitschrift für Didaktik der Naturwissenschaften, 27, 1–15. https://doi.org/10.1007/s40573-020-00122-x

OECD. (2017). PISA 2015 assessment and analytical framework. OECD Publishing.

Parhizgar, Z., & Liljedahl, P. (2019). Teaching modelling problems and its effects on students’ enga¬ge-ment and attitude toward mathematics. In S. A. Chamberlin & B. Sriraman (Eds.), Affect in Mathe-matical Modeling (pp. 235–256). Springer. https://doi.org/10.1007/978-3-030-04432-9_15

Rakoczy, K., Buff, A., & Lipowsky, F. (2005). Befragungsinstrumente [Instruments of measurement]. In E. Klieme, C. Pauli & K. Reusser (Eds.), Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-deutschen Videostudie "Unterrichtsqualität, Lernverhalten und mathematisches Verständnis" (Teil 1). GFPF/DIPF.

Rellensmann, J., Schukajlow, S., Blomberg, J., & Leopold, C. (2021). Does strategic knowledge matter? Effects of strategic knowledge about drawing on students’ modeling competencies in the domain of geometry. Mathematical Thinking and Learning, 25(3), 296–316. https://doi.org/10.1080/10986065.2021.2012741

Schukajlow, S., & Krug, A. (2014a). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45(4), 497–533. https://doi.org/10.5951/jresematheduc.45.4.0497

Schukajlow, S., & Krug, A. (2014b). Are interest and enjoyment important for students’ performance? In Nicol, C., Oesterle, S., Liljedahl, P., & Allan, D. (Eds.) Proceedings of the Joint Meeting of PME 38 and PME-NA 36, Vol. 5 (pp. 129-136). IGPME.

Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expec¬-ta¬tions. Educational Studies in Mathematics, 79, 215–237. https://doi.org/10.1007/s10649-011-9341-2

Schulze Elfringhoff, M., & Schukajlow, S. (2021). What makes a modelling problem interesting? Sources of situational interest in modelling problems. Quadrante: Revista de Investigação Em Educação Matemática, 30(1), 8–30. https://doi.org/10.48489/quadrante.23861

van Tuijl, C., & van der Molen, J. H. (2016). Study choice and career development in STEM fields: An overview and integration of the research. International Journal of Technology and Design Education, 26, 159–183. https://doi.org/10.1007/s10798-015-9308-1

Willems, A. S. (2011). Bedingungen des situationalen Interesses im Mathematikunterricht – eine mehrebenenanalytische Perspektive [Conditions of situational interests in mathematics lessons – a multilevel perspective]. Waxmann.

Zell, S. (2010). Fächerübergreifende Elemente im Mathematikunterricht zur Förderung von mathematical literacy [Interdiciplinary elements in mathematics lessons to foster mathematical literacy]. Franzbecker.

Downloads

Publicado

2023-12-31

Como Citar

Geisler, S., & Rach, S. (2023). Quem beneficia das tarefas de modelação combinadas com experiências? Efeitos das características afetivas dos alunos e das situações de aprendizagem no interesse situacional e no sentimento de competência. Quadrante, 32(2), 130–152. https://doi.org/10.48489/quadrante.31452

Edição

Secção

Artigos