Explorar o papel dos robôs de chão na melhoria das capacidades de pensamento computacional e rotação mental em alunos do segundo e terceiro ano
DOI:
https://doi.org/10.48489/quadrante.36860Palavras-chave:
pensamento computacional, rotação mental, robôs de chão, ensino primário, diferenças de géneroResumo
O presente estudo investiga o impacto da utilização de robôs de chão como ferramentas educativas para melhorar o pensamento computacional e as competências de rotação mental em alunos do segundo e terceiro ano. Para descobrir se os robôs de chão têm um efeito positivo na melhoria do pensamento computacional e das capacidades de rotação mental dos alunos, foi realizado um estudo pré-experimental. Especificamente, participaram no estudo 25 alunos do segundo ano e 25 alunos do terceiro ano. As tarefas de intervenção foram desenhadas de um menor para um maior grau de complexidade. Foram avaliadas três áreas: o desenvolvimento dos alunos nas suas competências de pensamento computacional, o desenvolvimento dos alunos nas suas capacidades de rotação mental e potenciais diferenças de género nestas capacidades. Após análise dos três objetivos específicos e realização de testes antes e depois da intervenção, concluiu-se que a utilização de robôs de chão melhora o pensamento computacional e as capacidades de rotação mental dos alunos, independentemente do género dos alunos.
Referências
Angeli, C., & Georgiou, K. (2023). Investigating the effects of gender and scaffolding in developing preschool children’s computational thinking during problem-solving with Bee-Bots. In Frontiers in Education, 7, 757627. https://doi.org/10.3389/feduc.2022.757627
Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018
Ary, D., Jacobs, L. C., Razavieh, C. K., & Walker, D. (2009). Introduction to Research in Education. Wadsworth.
Bakala, E., Tejera, G., Visca, J., Hitta, S., & Hourcade, J. P. (2023). Programmable floor robot Robotito and its Tangible and Virtual Interface. In Proceedings of the 22nd Annual ACM Interaction Design and Children Conference (pp. 745-747). https://doi.org/10.1145/3585088.3594486
Bati, K. (2022). A systematic literature review regarding computational thinking and programming in early childhood education. Education and Information Technologies, 27(2), 2059–2082. https://doi.org/10.1007/s10639-021-10700-2
Bers, M. U. (2008). Using robotic manipulatives to develop technological fluency in early childhood. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives on science and technology in early childhood education, 105-125. Information Age Publishing.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada.
Bruce, C. D., & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it? ZDM-Mathematics Education, 47(3), 331–343. https://doi.org/10.1007/s11858-014-0637-4
Cheng, Y. L., & Mix, K. S. (2013). Spatial training improves children’s mathematics ability. Journal of cognition and development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186
Ching, Y. H., & Hsu, Y. C. (2023). Educational robotics for developing computational thinking in young learners: A systematic review. TechTrends, 68, 423–434. https://doi.org/10.1007/s11528-023-00841-1
Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., & Sciortino, M. (2019). The effects of mental rotation on computational thinking. Computers & Education, 141, 103613. https://doi.org/10.1016/j.compedu.2019.103613
Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111(4), 845–849. https://doi.org/10.1037/0735-7044.111.4.845
D’Abreu, J. V. V., & Condori, K. O. V. (2017). Education and Educative Robotics. Revista de Educación a Distancia (RED), 54. http://dx.doi.org/10.6018/red/54/11
Diago, P. D., González-Calero, J. A., & Yáñez, D. F. (2022). Exploring the development of mental rotation and computational skills in elementary students through educational robotics. International Journal of Child-Computer Interaction, 32, 100388. https://doi.org/10.1016/j.ijcci.2021.100388
Drakatos, N., & Stompou, E. (2023). The perspective of STEM education through the usage of Robotics. World Journal of Advanced Research and Reviews, 18(3), 901-913. https://doi.org/10.30574/wjarr.2023.18.3.1146
Ebert, W. M., Jost, L., & Jansen, P. (2024). Gender stereotypes in preschoolers’ mental rotation. Frontiers in Psychology, 15, 1284314. https://doi.org/10.3389/fpsyg.2024.1284314
Enge, A., Kapoor, S., Kieslinger, A. S., & Skeide, M. A. (2023). A meta‐analysis of mental rotation in the first years of life. Developmental Science, 26(6), e13381. https://doi.org/10.1111/desc.13381
Georges, C., Cornu, V., & Schiltz, C. (2019). Spatial skills first: The importance of mental rotation for arithmetic skill acquisition. Journal of Numerical Cognition, 5(1), 5-23. https://doi.org/10.5964/jnc.v5i1.165
González‐Calero, J. A., Cózar, R., Villena, R., & Merino, J. M. (2019). The development of mental rotation abilities through robotics‐based instruction: An experience mediated by gender. British Journal of Educational Technology, 50(6), 3198-3213. https://doi.org/10.1111/bjet.12726
Hertanti, A., Retnawati, H., & Wutsqa, D. U. (2019). The role of spatial experience in mental rotation. Journal of Physics: Conference Series, 1320(1), 012043). https://doi.org/10.1088/1742-6596/1320/1/012043
Isharyadi, R., & Juandi, D. (2023). A systematics literature review of computational thinking in mathematics education: Benefits and challenges. Formatif: Jurnal Ilmiah Pendidikan MIPA, 13(1). https://doi.org/10.30998/formatif.v13i1.15922
Julià, C., & Antolì, J. Ò. (2018). Enhancing spatial ability and mechanical reasoning through a STEM course. International Journal of Technology and Design Education, 28(4), 957-983. https://doi.org/10.1007/s10798-017-9428-x
Karp, N. A., & Fry, D. (2021). What is the optimum design for my animal experiment?. BMJ Open Science, 5(1). 10.1136/bmjos-2020-100126
Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537–565. https://doi.org/10.1037/bul0000191
Lin, S., & Wong, G. K. (2024). Gender differences in computational thinking skills among primary and secondary school students: A systematic review. Education Sciences, 14(7), 790. https://doi.org/10.3390/educsci14070790
Linn, M., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 56(6), 1479-1498. https://doi.org/10.2307/1130467
Ma, S., & Wang, T. (2023). The optimal pre-post allocation for randomized clinical trials. BMC Medical Research Methodology, 23(1), 72. https://doi.org/10.1186/s12874-023-01893-w
Mast, F. W., & Gurtner, L. M. (2023). Mental rotation and visual imagery. In Oxford Research Encyclopedia of Psychology. https://doi.org/10.1093/acrefore/9780190236557.013.776
Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23(4), 337–341. https://doi.org/10.1007/BF01067434
Miola, L., Muffato, V., Pazzaglia, F., & Meneghetti, C. (2023). Men’s and women’s egocentric and allocentric knowledge: The involvement of mental rotation ability and spatial beliefs. Frontiers in Psychology, 14, 1130549. https://doi.org/10.3389/fpsyg.2023.1130549
Niousha, R., Saito, D., Washizaki, H., & Fukazawa, Y. (2023). Investigating the effect of binary gender preferences on computational thinking skills. Education Sciences, 13(5), 433. https://doi.org/10.3390/educsci13050433
Niousha, R., Saito, D., Washizaki, H., & Fukazawa, Y. (2022). Gender characteristics and computational thinking in Scratch. In M. Doyle, B. Stephenson, B. Dorn, L.-K. Soh, & L. Battestilli (Eds.), Proceedings of the 54th ACM Technical Symposium on Computer Science Education (Vol 2., pp. 1344-1344). https://doi.org/10.1145/3545947.3576290
Osorio, A., & Caballa, S. (2023). BeeBot: A robot that help children manage their blood glucose in a friendly way. In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 841-844). https://doi.org/10.1145/3568294.3580197
Pei, Z., & Nie, Y. (2018). Educational robots: Classification, characteristics, application areas and problems. In W. Zhang, Y. Wang, & M. Li (Eds.), Seventh International Conference of Educational Innovation through Technology (EITT) (pp. 57-62). IEEE. https://doi.org/10.1109/EITT.2018.00020
Pérez-Suay, A., García-Bayona, I., Van Vaerenbergh, S., & Pascual-Venteo, A. B. (2023). Assessing a didactic sequence for computational thinking development in early education using educational robots. Education Sciences, 13(7), 669. https://doi.org/10.3390/educsci13070669
Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and cognition, 28(1), 39-58. https://doi.org/10.1006/brcg.1995.1032
Raimundo, A. J., & dos Santos, C. A. (2023). Computational thinking: Unplugged activities in elementary school. Journal of Interdisciplinary Debates, 4(01), 47-69. https://doi.org/10.51249/jid.v4i01.1253
Ramírez Uclés, R., & Ramírez-Uclés, I. (2023). Gender differences in mental rotation test: a geometry-teaching perspective. Educación XX1, 26(2), 351-372. https://doi.org/10.5944/educxx1.33150
Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects, passion, peers, and play. MIT press. https://doi.org/10.7551/mitpress/11017.001.0001
Román-González, M. (2015). Computational thinking test: Design guidelines and content validation. In EDULEARN15 Proceedings (pp. 2436-2444). IATED. https://doi.org/10.13140/RG.2.1.4203.4329
Rovshenov, A., Büyükdede, M., & Acar, V. (2022). Integration of Educational Robotics to STEM Education. In Handbook of Research on Integrating ICTs in STEAM Education (pp. 219-238). IGI Global. https://doi.org/10.4018/978-1-6684-3861-9.ch011
Seckel, M. J., Salinas, C., Font, V., & Sala-Sebastia, G. (2023). Guidelines to develop computational thinking using the Bee-bot robot from the literature. Education and Information Technologies, 28(12), 16127-16151. https://doi.org/10.1007/s10639-023-11843-0
Seepanomwan, K., Caligiore, D., Baldassarre, G., & Cangelosi, A. (2013). A cognitive robotic model of mental rotation. In 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) (pp. 36-43). IEEE. https://doi.org/10.1109/CCMB.2013.6609163
Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Coding games and robots to enhance computational thinking: How collaboration and engagement moderate children’s attitudes? International Journal of Child-Computer Interaction, 21, 65–76. https://doi.org/10.1016/j.ijcci.2019.04.004
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703. https://doi.org/10.1126/science.171.3972.701
Sheoran, N., & Chaudhary, K. (2023). Robots in Education: Diverting Force in Emotional Well Being of Students. In P. C. Sharma, R. Bansal, & R. Singh (Eds.), Technology-Driven E-Learning Pedagogy Through Emotional Intelligence, (pp. 58-80). IGI Global. https://doi.org/10.4018/978-1-6684-7639-0.ch005
Somyürek, S. (2015). An effective educational tool: construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25, 25-41. https://doi.org/10.1007/s10798-014-9272-1
Stratton, S. J. (2019). Quasi-experimental design (pre-test and post-test studies) in prehospital and disaster research. Prehospital and disaster medicine, 34(6), 573-574. https://doi.org/10.1017/S1049023X19005053
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and motor skills, 47(2), 599-604. https://doi.org/10.2466/pms.1978.47.2.599
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
Zapata-Cáceres, M., Martín-Barroso, E., & Román-González, M. (2020). Computational thinking test for beginners: Design and content validation. In 2020 IEEE Global Engineering Education Conference (pp. 1905-1914). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125368
Zawadzka, E. (2022). Differences between men and women in cognitive strategies applied in mental rotation tasks. Acta Neuropsychologica, 20(2), 225-240. https://doi.org/10.5604/01.3001.0015.9186
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.