Instructional design of a modeling experience in an optimization situation

Authors

DOI:

https://doi.org/10.48489/quadrante.23593

Keywords:

optimization, Models and Modelling Perspective, derivative, Design based research

Abstract

The need to optimize is present in numerous real-life situations. A variety of interesting contexts can be found for modelling phenomena that require finding an optimal solution. In this paper we describe and analyse the design and experimentation process of an optimization task situated in a real context and focused on the Models and Modelling Perspective developed by Lesh and Doerr. The experimentation was carried out with 13 high school students, 24 starting their undergraduate studies in Applied Mathematics and 7 master’s students on Models and Modelling. Through the models generated, the participants showed the development of their conceptual systems associated with optimization. The Design-based research was the adopted methodology, by carrying out two iterative cycles, in which the principles of instructional design of a model-eliciting activity of Models and Modelling and the ways of thinking revealed by the students were the main instruments to inform the evolution of the modelling sequence. The results obtained from the experimentation show the modelling process followed by the students and the models they gener­ated. It was the basis to reflect on the adherence to the principles of instructional design, considering the changes in the task, and, finally, we discuss its feasibility.

References

Abassian, A., Safi, F., Bush, S., & Bostic, J. (2020). Five different perspectives on mathematical modeling in mathematics education. Investigations in Mathematics Learning, 12(1), 53-65. https://doi.org/10.1080/19477503.2019.1595360

Abrantes, P. (1993). Project work in school mathematics. In J. De Lange (Ed.), Innovation in maths education by modelling and applications (pp. 355-364). Chichester: Horwood.

Aliprantis, C., & Carmona, G. (2003). Introduction to an economic problem: A models and modeling perspective. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 255-264). Mahwah, NJ: Lawrence Erlbaum Associates.

Ärlebäck, J., & Doerr, H. (2018). Students’ interpretations and reasoning about phenomena with negatives rates of change throughout a model development sequence. ZDM Mathematics Education, 50, 187-200. https://doi.org/10.1007/s11858-017-0881-5

Bakker, A., & van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In A. Bikner, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 429-466). Springer. https://doi.org/10.1007/978-94-017-9181-6_16

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15-30). New York: Springer. https://doi.org/10.1007/978-94-007-0910-2_3

Blum, W., & Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.

Brady, C., Eames, C., & Lesh, D. (2015). Connecting real-word and in school problem solving experiences. Quadrante, 24(2), 5-38. https://doi.org/10.48489/quadrante.22924

Doerr, H. (2016). Designing sequences of model development tasks. In C. Hirsch, & A. McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 197-206). Reston VA: The National Council of Teachers of Mathematics, Inc.

Dominguez, A. (2010). Single solution, multiple perspectives. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 223-233). Boston, MA.: Springer.

Dossey, J. A., McCrone, S., Giordano, F. R., & Weir, M. (2002). Mathematics methods and modeling for today’s classroom: A contemporary approach to teaching grades 7-12. New York: Brooks/Cole.

Galbraith, P., & Clathworthy, N. (1990). Beyond standard models - meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137-163.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates.

Hollebrands, K., & Okumus, S. (2017). Prospective mathematics teachers’ processes for solving optimization problems using Cabri 3D. Digital Experiences in Mathematics Education, 3, 206-232. https://doi.org/10.1007/s40751-017-0033-0

Kaiser, G. (2016). The teaching and learning of mathematical modeling. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 267-291). Reston, Va.: National Council of Teachers of Mathematics.

Kaiser-Messmer, G. (1987). Application-oriented mathematics teaching mathematics. In W. Blum (Ed.), Applications and modelling in learning and teaching mathematics (pp. 66-72). Chichester Horwood.

Lehrer, R., & Schauble, L. (2000). The development of model-based reasoning. Journal of Applied Developmental Psychology, 21(1), 39-48.

Lesh, R. (1997). Matematización: La necesidad «real» en la fluidez de las representaciones. Enseñanza de las Ciencias, 15(3), 377-391.

Lesh, R., Cramer, K., Doer, H., Post, T., & Zawojewsky, J. (2003). Model development sequences. In R. Lesh, & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 35-58). Mahwah, NJ: Lawrence Erlbaum Associates.

Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-33). Mahwah, NJ.: Lawrence Erlbaum Associates.

Lesh, R., & English, L. (2005). Trends in the evolution of the Models and Modeling perspectives on mathematical learning and problem solving. ZDM. The International Journal on Mathematics Education, 37(6), 487-489.

Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591-646). Mahwah, N. J.: Lawrence Erlbaum Associates.

Malaspina, U. (2002). Optimización matemática. In C. Crespo (Ed.), Acta latinoamericana de matemática educativa (pp. 43-48). México, DF.: Comité Latinoamericano de Matemática Educativa.

Malaspina, U. (2007). Intuición, rigor y resolución de problemas de optimización. Revista Latinoamericana de Investigación en Matemática Educativa, 10(3), 365-399.

Sáenz de Cabezón, E. (2015). Derivando: Cómo rellenar el espacio con figuras iguales. Retrieved from https://www.youtube.com/watch?v=gz0TyR3bDb0

Secretaría de Educación Pública (SEP) (2017). Planes de estudio de referencia del Marco Curricular Común de la Educación Media Superior. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/241519/planes-estudio-sems.pdf

The Design Based Research Collective (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005

Tikhomirov, V. M. (1991). Stories about Maxima and Minima (Vol. 1). American Mathematical Society.

Tran, D., & Doughertyen, B. (2014). Authenticity of mathematical modeling. Mathematics Teacher, 107(9), 672-678.

Trigueros, M. (2009). El uso de la modelación en la enseñanza de las matemáticas. Innovación Educativa, 9(46), 75-87.

Published

2021-06-30

How to Cite

Irigoyen Carrillo, M. E., Alvarado Monroy, A., & González Astudillo, M. T. (2021). Instructional design of a modeling experience in an optimization situation. Quadrante, 30(1), 242–266. https://doi.org/10.48489/quadrante.23593

Issue

Section

Articles