Teaching and learning combinatorics in secondary school: a modelling approach based on the Anthropological Theory of the Didactic
DOI:
https://doi.org/10.48489/quadrante.23878Keywords:
combinatorics, mathematical modelling, secondary school, study and research paths, modelling praxeologiesAbstract
This paper focuses on the role of combinatorics as a modelling tool to inquire about different situations involving counting and simulation with real objects. Based on the Anthropological Theory of the Didactic, our research presents the design and implementation of a Study and Research Path (SRP) for compulsory secondary education in the area of combinatorics. The SRP starts from a generating question about discovering which padlock (among several) is safer. The empirical results correspond to a second implementation of the SRP with grade 10 students in a Catalan school with a long experience in educational innovation. We distinguish two modelling phases. First, we look at the role of combinatorics in the modelling process that emerged from the initial padlocks’ problem situation. We consider students’ construction of models to represent their explorations through the interaction with the padlocks, highlighting the importance of naming and defining the variables and the relationships used to characterise the types of padlocks. Second, we analyse how students simulate and validate these elementary combinatorial models before generalising them to explore other systems beyond padlocks.
References
Barquero, B. (2009). Ecología de la modelización matemática en la enseñanza universitaria de las matemáticas (Doctoral dissertation). Universitat Autònoma de Barcelona. https://ddd.uab.cat/record/63192
Barquero, B., & Bosch, M. (2015). Didactic Engineering as a research methodology: From fundamental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 249-272). Springer.
Barquero, B., Bosch, M., & Gascón, J. (2019). The unit of analysis in the formulation of research problems: The case of mathematical modelling at the university level. Research in Mathematics Education, 21(3), 314-330. https://doi.org/10.1080/14794802.2019.1624602
Barquero, B., Bosch, M., & Wozniak, F. (2019). Modelling praxeologies in teacher education: the cake box. In U.T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the CERME 11 (pp. 1144-1152). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32, 181-199. https://doi.org/10.1023/A:1002954428327
Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example Sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics. ICTMA 12 (pp. 222–231). Horwood.
Borromeo Ferri, R. (2007). Modeling from a cognitive perspective: Individual modeling routes of pupils. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling: Education, engineering and economics (pp. 260-270). Horwood.
Bosch, M. (2018). Study and Research Paths: A model for inquiry. Proceedings of the International Congress of Mathematics (pp. 4001-4022). ICM.
Chevallard, Y. (1989). Le passage de l’arithmétique a l’algébrique dans l’enseignement des mathématiques au collège – Deuxième partie. Perspectives curriculaires: la notion de modélisation [The transition between arithmetic and algebra in the teaching of mathematics at secondary school level – Second part. Curricula approaches: The notion of modelling]. Petit x, 19, 45-75.
Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique [The analysis of teaching practices from the anthropological theory of the didactic]. Recherches en Didactique des Mathématiques, 19(2), 221-266.
Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (ed), Proceedings of CERME 4 (pp. 21-30). Fundemi IQS.
Chevallard, Y. (2015). Teaching mathematics in tomorrow’s society: A case for an oncoming counter paradigm. In S.J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 173-187). Springer. https://doi.org/10.1007/978-3-319-12688-3_13
DeGuire, L. (1991). Permutations and combinations: A problem solving approach for middle school students. In M. J. Kenny & C. R. Hirsh (Eds.), Discrete Mathematics across the curriculum, K-12: 1991 Yearbook (pp. 55-58). National Council of Teachers of Mathematics.
Dubois, J. G. (1984). Une systematique des configurations combinatoires simples [A system of simple combinatorial configurations]. Educational Studies in Mathematics, 15 (1), 37-57. https://doi.org/10.1007/BF00380438
English, L. D. (1993). Children’s’ strategies in solving two- and three-dimensional combinatorial problems. Journal for Research in Mathematics Education, 24(3), 255-273.
English, L. D. (2005). Combinatorics and the development of children’s combinatorial reasoning. In G.A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 121-141). Kluwer Academic Publishers.
Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM Mathematics Education, 38(2), 143-162. https://doi.org/10.1007/BF02655886
García, F. J., Gascón, J., Higueras, L. R., & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics. ZDM Mathematics Education, 38(3), 226-246. https://doi.org/10.1007/BF02652807
Jessen, B., Otaki, K., Miyakawa, T., Hamanaka, H., Mozoguchi, T., Shinno, M., & Winsløw, C. (2020). The ecology of study and research paths in upper secondary school. In M. Bosch, Y. Chevallard, F. J. García, & J. Monaghan (Eds.), Working with the Anthropological Theory of the Didactic in mathematics education: A comprehensive Casebook (pp. 118-138). Routledge. https://doi.org/10.4324/9780429198168
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. ZDM Mathematics Education, 38, 302-310. https://doi.org/10.1007/BF02652813
Kapur, J. N. (1970). Combinatorial analysis and school mathematics. Educational Studies in Mathematics, 3, 111-127. https://www.jstor.org/stable/3481871
Lockwood, E. (2013). A model of students’ combinatorial thinking. Journal of Mathematical Behavior, 32, 251-265. https://doi.org/10.1016/j.jmathb.2013.02.008
Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314
Perrenet, J., & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of Mathematical Modelling and Application, 1(6), 3-21.
Roa, R., Batanero, C., & Godino, J. (2003). Estrategias generales y estrategias aritméticas en la resolución de problemas combinatorios. Educación Matemática 15(2), 5-25.
Serrano, L., Bosch, M., & Gascón, J. (2010). Fitting models to data. The mathematising step in the modelling process. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 2185-2196). Institut National de Recherche Pédagogique and ERME.
Wozniak, F. (2012). Des professeurs des écoles face à un problème de modélisation: Une question d’équipement praxéologique. Recherches en Didactique des Mathématiques, 32(1), 7–55.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) belongs to Quadrante. Nevertheless, we encourage articles to be published in institutional or personal repositories as long as their original publication in Quadrante is identified and a link to the journal's website is included.