Thinking beyond numbers: Rewiring Mathematics Education through Neuroscience, emotion, and agency

Authors

  • Luiz Carlos Leal Junior Instituto Federal de São Paulo | Brazil https://orcid.org/0000-0003-0099-3359
  • José Milton Lopes Pinheiro Universidade Estadual da Região Tocantina do Maranhão | Brazil

DOI:

https://doi.org/10.48489/quadrante.42081

Keywords:

Neuroeducation, Executive Function Development, Neurodiversity in Mathematics, Pedagogical Innovation, Emotional Engagement, Cognitive Agency

Abstract

This article introduces an innovative, interdisciplinary pedagogical framework for Mathematics Education, integrating insights from cognitive Neuroscience, Psychopedagogy, and Problem-Solving research. Grounded in empirical evidence from a comprehensive case study with elementary students, the approach advocates for a paradigm shift that recognizes cognitive diversity, fosters emotional safety, and promotes conceptual autonomy. Leveraging neural plasticity and executive function development, it challenges deterministic notions of mathematical ability, positioning Mathematics as a deeply human, accessible, and meaningful intellectual pursuit. Employing archeogenealogical analysis, this study critically examines how prevailing pedagogical discourses shape, constrain, and open pathways to reimagining mathematical learning. The findings highlight the necessity of holistic practices that engage cognitive, emotional, and neurodevelopmental dimensions, emphasizing respect for individual neurodiversity and fostering an inclusive, agency-driven mathematical experience.

References

Aldous, C. R. (2007). Creativity, problem solving and innovative science: Insights from history, cognitive psychology and neuroscience. International Education Journal, 8(2), 176–187. https://files.eric.ed.gov/fulltext/EJ834201.pdf

Bernardo, A. B. I. (1997). The psychology of mathematics learning and problem solving: Implications for mathematics education. Layag, 2(1), 1–12. https://ejournals.ph/article.php?id=1350

Boaler, J. (2015). Mathematical mindsets: Unleashing students’ potential through creative math, inspiring messages and innovative teaching. Jossey-Bass.

Bruner, J. S. (1960). The process of education. Harvard University Press.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

De Smedt, B., & Verschaffel, L. (2010). Traveling down the road: From cognitive neuroscience to mathematics education … and back. ZDM – The International Journal on Mathematics Education, 42(6), 649–654. https://doi.org/10.1007/s11858-010-0282-5

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Doidge, N. (2007). The brain that changes itself: Stories of personal triumph from the frontiers of brain science. Penguin Books.

Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427(6972), 311–312. https://doi.org/10.1038/427311a

Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.

English, L. D., & Gainsburg, J. (2015). Problem solving in a 21st-century mathematics curriculum. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 325–347). Routledge. https://doi.org/10.4324/9780203448946-20

Foucault, M. (1979). The archaeology of knowledge. Routledge. (Original work published 1969)

Freire, P. (1970). Pedagogy of the oppressed. Herder and Herder.

Freire, P. (1996). Pedagogia da autonomia: Saberes necessários à prática educativa. Paz e Terra.

Grabner, R. H., Ansari, D., & De Smedt, B. (2016). Neurocognitive mechanisms of numerical and mathematical cognition: Insights from neuroimaging and neuropsychology. Trends in Cognitive Sciences, 20(6), 434–450. https://doi.org/10.1016/j.tics.2016.04.001

Grabner, R. H., Obersteiner, A., De Smedt, B., Vogel, S. E., von Aster, M., Leikin, R., & Nuerk, H. C. (2017). Mathematics education and neuroscience. In T. Dooley & G. Gueudet (Eds.), Compendium for early career researchers in mathematics education (pp. 657–658). Springer. https://doi.org/10.1007/978-3-319-62597-3_92

Immordino-Yang, M. H. (2016). Emotions, learning, and the brain: Exploring the educational implications of affective neuroscience. W. W. Norton & Company.

Immordino-Yang, M. H., & Damasio, A. (2007). We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain, and Education, 1(1), 3–10. https://doi.org/10.1111/j.1751-228X.2007.00004.x

Krashen, S. D. (1982). Principles and practice in second language acquisition. Pergamon Press.

Larrosa, J. (1994). Pedagogía profana: Ensayos sobre saber, subjetividad y experiencia. Laertes.

Leal Junior, L. C. (2018). Tessitura sobre discursos acerca de Resolução de Problemas e seus pressupostos filosóficos em Educação Matemática: Cosi è, se vi pare [Tese de doutorado, Universidade Estadual Paulista, Rio Claro]. Comunidades & Coleções. https://repositorio.unesp.br/entities/publication/6e940fc5-f431-4670-a4fd-203f909f00c1

Leal Junior, L. C. (2020). Psicopedagogia e Educação Matemática: Uma arqueogenealogia das pesquisas relacionadas na última década [Monografia de especialização não publicada]. Centro Universitário Barão de Mauá.

Leal Junior, L. C., Andrade, A. S., & Barros, L. A. M. (2022). Problematização, signos e matemática: Afetos que movimentam acontecimentos e aprendizagens em aulas de matemática. Revista de Educação Matemática (REMat), 19, 1–20. https://doi.org/10.37001/remat25269062v19id683

Leal Junior, L. C., & Onuchic, L. R. (2020). A way to do research in mathematics education as an archeogenealogy: Report, challenge and opportunities wearing the lens of a discourse analysis. International Journal of Latest Research in Humanities and Social Science, 3(1), 81–95. http://www.ijlrhss.com/paper/volume-3-issue-5/15-HSS-670.pdf

Leikin, R. (2017). Brain research and mathematics education: Insights and implications. Educational Studies in Mathematics, 94(3), 273–292. https://doi.org/10.1007/s10649-016-9720-4

Leikin, R. (2018). How can cognitive neuroscience contribute to mathematics education? Bridging the two research areas. In M. Shelley & A. Pehkonen (Eds.), Research advances in mathematics education: Perspectives from Europe, Asia and America (pp. 363–383). Springer. https://doi.org/10.1007/978-3-319-72170-5_21

Leite, A. (2020). Educação inclusiva e neurodiversidade: Perspectivas éticas e pedagógicas. Vozes.

Liljedahl, P., Oesterle, S., & Zazkis, R. (2016a). Heuristics and mathematical inquiry: Strategies to promote student engagement. Mathematics Education Research Journal, 28(4), 491–510. https://doi.org/10.1007/s13394-016-0186-1

Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016b). Problem solving in mathematics education. Springer. https://doi.org/10.1007/978-3-319-40730-2

Menon, V. (2010). Developmental cognitive neuroscience of arithmetic: Implications for learning and education. ZDM – The International Journal on Mathematics Education, 42(6), 515–525. https://doi.org/10.1007/s11858-010-0260-1

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. NCTM.

Paim, I. (2005). Educação, ética e humanização. Loyola.

Paivio, A. (1986). Mental representations: A dual coding approach. Oxford University Press.

Piaget, J. (1950). The psychology of intelligence. Routledge & Kegan Paul.

Pinheiro, J. M. L., Andrade, A. S., Andrade, C., Martins, E. R., & Leal Junior, L. C. (2022). Cognição, linguagem e aprendizagem em matemática. Revista de Educação Matemática (REMat), 19, 1–9. https://doi.org/10.37001/remat25269062v19id799

Pólya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press.

Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.

Schoenfeld, A. H. (Ed.). (1987). Cognitive science and mathematics education. Lawrence Erlbaum Associates. https://eduq.info/xmlui/handle/11515/16435

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). Macmillan.

Sousa, D. A. (2011). How the brain learns mathematics (2nd ed.). Corwin Press.

Sušac, A., & Braeutigam, S. (2014). A case for neuroscience in mathematics education. Frontiers in Human Neuroscience, 8, 314. https://doi.org/10.3389/fnhum.2014.00314

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4

Tokuhama-Espinosa, T. (2014). Making classrooms better: 50 practical applications of mind, brain, and education science. W. W. Norton & Company.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Warshauer, H. K. (2015). Productive struggle in middle school mathematics classrooms. Journal of Mathematics Teacher Education, 18(4), 375–400. https://doi.org/10.1007/s10857-014-9286-3

Weiss, M. D. (2012). A escuta psicopedagógica: Do diagnóstico à intervenção. Vozes.

Wilkerson, T. (2022, July). Problem solving: An approach to understanding and critiquing our world. National Council of Teachers of Mathematics. https://www.nctm.org

Downloads

Published

2025-12-31

How to Cite

Leal Junior, L. C., & Lopes Pinheiro, J. M. (2025). Thinking beyond numbers: Rewiring Mathematics Education through Neuroscience, emotion, and agency. Quadrante, 34(2), 159–181. https://doi.org/10.48489/quadrante.42081

Issue

Section

Other Articles