Mental computation with rational numbers and number sense development
DOI:
https://doi.org/10.48489/quadrante.23017Keywords:
mental computation, number sense, rational numbers, students’ strategiesAbstract
The development of students’ mental computation is closely related to the development of number sense. In this article, we aim to understand which number sense components are reflected in grade 6 students’ mental computation strategies with rational numbers. The analysis stands on the knowledge and skills that students show about numbers and their operations, and on its use in computational situations. The methodology is qualitative with a design-based research approach. The participants are 39 grade 6 students, two teachers and a researcher. The data were collected through audio and video recordings of mental computation lessons that were later transcribed for analysis. The results show that students’ mental computation strategies with rational numbers reflect number sense. These strategies focus on the use of a diversity of numerical relationships, among them the relation between different rational numbers representations and operations, which allows students to compare numbers and understand their magnitude. Changing representations has an important role in the construction of mental computation strategies with rational numbers showing students’ number sense.
References
Berch, D.B. (2009). Making sense of number sense: Implications for children with Mathematical disabilities. Journal of Learning Disabilities, 38(4), 333-339.
Bourdenet, G. (2007). Le calcul mental. Activités Mathématiques et Scientifiques, 61, 5-32.
Caney, A., & Watson, J.M. (2003). Mental computation strategies for part-whole numbers. AARE 2003 Conference papers, International Education Research. http://www.aare.edu.au/03pap/can03399.pdf
Carpenter, T., Franke, M., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann.
Carvalho, R. (2016). Cálculo mental com números racionais: Um estudo com alunos do 6.º ano de escolaridade (Tese de doutoramento). Universidade de Lisboa, Lisboa.
Cobb, P., Confrey, J., diSessa, A., Lehere, R., &Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13.
Cramer, K., Wyberg, T., & Leavitt, S. (2009). Fraction operations and initial decimal ideas. Companion module to Rational Number Project: Fraction Lessons for the Middle Grades. http://www.cehd.umn.edu/rationalnumberproject/rnp2.html
Cruz, S.M., & Spinillo, A.G. (2004). Resolvendo adição de frações através do simbolismo matemático e através de âncoras. Quadrante, 12(2), 3-29.
Empson, S., Levi, L., & Carpenter, T. (2010). The algebraic nature of fraction: Developing relational thinking in elementary school. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 409–428). Heidelberg: Springer.
Gálvez, G., Cosmelli, D., Cubillos, L., Leger, P., Mena, A., Tanter, E., Flores, X., Luci, G., Montoya, S., & Soto-Andrade, J. (2011). Estrategias cognitivas para el cálculo mental. RELIME-Revista Latinoamericana de Investigación en Matemática Educativa, 14(1), 9-40.
Guerreiro, H., Serrazina, L., & Ponte, J.P. (2018). Uma trajetória na aprendizagem dos números racionais através da percentagem. Educação Matemática Pesquisa, 20(1), 359–384.
Heirdsfield, A. (2011). Teaching mental computation strategies in early mathematics. Young Children, 66(2), 96–102.
McIntosh, A., Reys, B.J., & Reys, R.E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3), 2-8 & 44.
Ministério da Educação (2007). Programa de Matemática do Ensino Básico. Lisboa. http://sitio.dgidc.minedu.pt/matematica/Documents/ProgramaMatematica.pdf
Ministério da Educação e Ciência (2013). Programa e Metas Curriculares de Matemática do Ensino Básico. Lisboa. http://dge.mec.pt/metascurriculares/index.php?s =directorio&pid=17
Ponte, J.P., Carvalho, R., Mata-Pereira, J., & Quaresma, M. (2016). Investigação baseada em design para compreender e melhorar as práticas educativas. Quadrante, 25(2), 77–98.
Reys, B. J. (1994). Promoting number sense in the middle grades. Mathematics Teaching in the Middle School, 1(2), 114-120.
Thompson, I. (2009). Mental calculation. Mathematics Teaching, 213, 40-42.Yang, D. C., & Reys, R.E. (2001). Developing number sense. Mathematics Teaching, 176, 39-42.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) belongs to Quadrante. Nevertheless, we encourage articles to be published in institutional or personal repositories as long as their original publication in Quadrante is identified and a link to the journal's website is included.