Fermi problems in standardized assessment in grade 8

Authors

DOI:

https://doi.org/10.48489/quadrante.23587

Keywords:

Fermi tasks, mathematical modelling, task criteria, modelling tasks, test problems

Abstract

Since 2006, Germany has been pursuing a comprehensive educational monitoring strategy that includes comparative and standardized assessment tests (called VERA) in mathematics. These tests are administered state-wide and, with a few exceptions, in the eighth grade of every general education school. Among other competencies, these tests examine the modelling competency of stu­­dents. In application and modelling tasks, the various requirements associated with testing tasks create specific challenges that often result in word problems rather than real applications. One pos­sible approach to setting a suitable modelling problem for assessment is to use Fermi problems that draw upon a real context. Based on various classifications of mathematical tasks, this paper develops a series of criteria for Fermi problems for assessment purposes. These criteria are applied specifically to Fermi problems contained in the described standardized assessment tool in Grade 8 in Germany. Based on the findings, differences and similarities between Fermi problems are deter­mined and discussed. Fermi problems exhibit a certain homogeneity as specialized modelling tasks, but are also associated with a broad spectrum of difficulties, which seem to be linked to the number of mathematical quantities required for the solution. Various Fermi problems can cover many different aspects of performance and are a good way to incorporate authentic situations into test problems.

References

Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educational Studies in Mathematics, 86(1), 79–96. https://doi.org/10.1007/s10649-013-9528-9

Bergman Ärlebäck, J. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Montana Mathematics Enthusiast, 6(3), 331–364.

Bergman Ärlebäck, J., & Albarracín, L. (2019). The use and potential of Fermi problems in the STEM disciplines to support the development of twenty-first century competencies. ZDM Mathematics Education, 51(6), 979–990. https://doi.org/10.1007/s11858-019-01075-3

Bergman Ärlebäck, J., & Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling mompetencies (pp. 597–609). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-0561-1_52

Blum, W., Drüke-Noe, C., Leiß, D., Wiegand, B., & Jordan, A. (2005). Zur rolle von bildungsstandards für die qualitätsentwicklung im mathematikunterricht. Zentralblatt für Didaktik der Mathematik, 37(4), 267–274. https://doi.org/10.1007/BF02655814

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 222–231). Chichester: Horwood. https://doi.org/10.1533/9780857099419.5.221

Blum, W., vom Hofe, R., Jordan, A., & Kleine, M. (2004). Grundvorstellungen als aufgabenanalytisches und diagnostisches Instrument bei PISA. In M. Neubrand (Ed.), Mathematische kompetenzen von schülerinnen und schülern in Deutschland: Vertiefende analysen im rahmen von PISA 2000 (pp. 145–173). Wiesbaden: VS, Verlag für Sozialwissenschaften.

Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln: Lernen fördern - Leistung überprüfen. Berlin: Cornelsen.

Drüke-Noe, C. (2014). Aufgabenkultur in klassenarbeiten im fach mathematik. Wiesbaden: Springer Fachmedien. https://doi.org/10.1007/978-3-658-05351-2

Ehmke, T., Köller, O., & Stanat, P. (2017). Äquivalenz der erfassung mathematischer kompetenzen in PISA 2012 und im IQB-Ländervergleich 2012. Zeitschrift für Erziehungswissenschaft, 20(S2), 37–59. https://doi.org/10.1007/s11618-017-0751-5

Ferrando, I., & Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: Analysis of emerging models. Mathematics Education Research Journal, 33, 61–78 https://doi.org/10.1007/s13394-019-00292-z

Greefrath, G. (2010). Analysis of modeling problem solutions with methods of problem solving. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 265–271). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-0561-1_23

Greefrath, G. (2019a). Fermi-aufgaben in vergleichsarbeiten in klasse 8 – Kriterien und ergebnisse. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer (Eds.), Vielfältige zugänge zum nathematikunterricht (pp. 19–32). Wiesbaden: Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-24292-3_2

Greefrath, G. (2019b). Mathematical Modelling—Background and current projects in Germany. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano, & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 23-41). Valladolid: SEIEM. Retrieved from http://www.seiem.es/docs/actas/23/ActasXXIIISEIEM.pdf

Greefrath, G. (2020). Mathematical modelling competence. Selected current research developments. Avances de Investigación En Educación Matemática, 17, 38–51. https://doi.org/10.35763/aiem.v0i17.303

Greefrath, G., Siller, H.-S., & Ludwig, M. (2017). Modelling problems in German grammar school leaving examinations (Abitur) – Theory and practice. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (pp. 932–939). Dublin: DCU Institute of Education and ERME. Retrieved from https://hal.archives-ouvertes.fr/hal-01933483

Hernandez-Martinez, P., & Vos, P. (2018). “Why do I have to learn this?” A case study on students’ experiences of the relevance of mathematical modelling activities. ZDM Mathematics Education, 50(1–2), 245–257. https://doi.org/10.1007/s11858-017-0904-2

Joint Committee on Standards for Educational Evaluation. (2018). Checklist of the program evaluation standards statements. Retrieved from https://wmich.edu/evaluation/checklists

Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 110–119). Chichester: Horwood. https://doi.org/10.1533/9780857099419.3.110

KMK (Ed.). (2012). Bildungsstandards im fach mathematik für die allgemeine hochschulreife (Beschluss der Kultusministerkonferenz vom 18.10.2012). Köln: Wolters Kluwer.

Maaß, K. (2006). What are modelling competencies? ZDM Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885

Maaß, K. (2010). Classification scheme for modelling tasks. Journal Für Mathematik-Didaktik, 31(2), 285–311. https://doi.org/10.1007/s13138-010-0010-2

Maier, U., Kleinknecht, M., Metz, K., & Bohl, T. (2010). Ein allgemeindidaktisches kategoriensystem zur analyse des kognitiven potenzials von aufgaben. (Fachportal Pädagogik). Retrieved from https://nbn-resolving.org/urn:nbn:de:0111-pedocs-137347

Maier, U., Metz, K., Bohl, T., Kleinknecht, M., & Schymala, M. (2012). Vergleichsarbeiten als instrument der datenbasierten schul- und unterrichtsentwicklung in Gymnasien. In A. Wacker, U. Maier, & J. Wissinger (Eds.), Schul- und Unterrichtsreform durch ergebnisorientierte Steuerung (pp. 197–224). Wiesbaden: VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-531-94183-7_9

Mayring, P. (2014). Qualitative content analysis: Theoretical foundation, basic procedures and software solution. Klagenfurt. Retrieved from https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173

Neubrand, M., Klieme, E., Lüdtke, O., & Neubrand, J. (2002). Kompetenzstufen und schwierigkeitsmodelle für den PISA-Test zur mathematischen grundbildung. Unterrichtswissenschaft, 30(2), 100–119.

Niss, M. (1992). Applications and modelling in school mathematics—Directions for future development. In I. Wirszup & R. Streit (Eds.), Development in school mathematics education around the world (Vol. 3, pp. 346–361). Reston: NCTM.

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Abingdon, Oxon ; New York, NY: Routledge.

Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9–28. https://doi.org/10.1007/s10649-019-09903-9

OECD. (2013). PISA 2012 Assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD. https://doi.org/10.1787/9789264190511-en

Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 201–208). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-29822-1_20

Peter-Koop, A. (2004). Fermi problems in primary mathematics classrooms: Pupils’ interactive modelling processes. Mathematics Education for the Third Millennium: Towards 2010. Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, Townsville, 27, 454–461. Sydney: MERGA.

Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problems. In B. Clarke, B. Grevholm, & R. Millman (Eds.), Tasks in primary mathematics teacher education (Vol. 4, pp. 131–146). Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-09669-8_10

Pólya, G. (1981). Mathematical discovery. On understanding, learning, and teaching problem solving. New York: John Wiley & Sons Inc.

Prodromou, L. (1995). The backwash effect: From testing to teaching. ELT Journal, 49(1), 13–25. https://doi.org/10.1093/elt/49.1.13

Reit, X.-R., & Ludwig, M. (2015a). An approach to theory based modelling tasks. In G. A. Stillman, W. Blum, & M. Salett Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 81–91). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-18272-8_6

Reit, X.-R., & Ludwig, M. (2015b). Thought structures as an instrument to determine the degree of difficulty of modelling tasks. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (CERME9, 4-8 February 2015) (pp. 917–922). Prague: Charles University in Prague, Faculty of Education and ERME.

Ross, J., & Ross, M. (1986). Fermi problems or how to make the most of what you already know. In H. L. Schoen & M. J. Zweng (Eds.), Estimation and mental computation (pp. 175–181). Reston, VA: National Council of Teachers of Mathematics.

Schecker, H., & Parchmann, I. (2007). Standards and competence models: The German situation. In D. Waddington, P. Nentwig, & S. Schanze (Eds.), Making it comparable. Standards in science education (pp. 147–164). Münster: Waxmann.

Sriraman, B., & Lesh, R. A. (2006). Modeling conceptions revisited. ZDM Mathematics Education, 38(3), 247–254. https://doi.org/10.1007/BF02652808

van den Heuvel-Panhuizen, M., & Becker, J. (2003). Towards a didactic model for assessment design in mathematics education. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 689–716). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-010-0273-8_23

Vos, P. (2018). “How real people really need mathematics in the real world” – Authenticity in mathematics education. Education Sciences, 8(4), 195. https://doi.org/10.3390/educsci8040195

Downloads

Published

2021-06-30

How to Cite

Greefrath, G., & Frenken, L. (2021). Fermi problems in standardized assessment in grade 8. Quadrante, 30(1), 52–73. https://doi.org/10.48489/quadrante.23587

Issue

Section

Articles