Epidemiological models and the problem of coherence: from the critical justification to a practice of teaching mathematical modelling

Authors

DOI:

https://doi.org/10.48489/quadrante.23597

Keywords:

critical justification, epidemics, exemplarity, high school, mathematical modelling, SIR model

Abstract

We explore the critical justification for mathematical modelling in school as one that aims at enabling students to reflect – internally and externally – on the role of mathematical models in describing and shaping risk phenomena, determining people’s courses of action, and informing actual policy decision-making. We argue for the exemplarity of epidemiology from three perspec­tives; subjective, instrumental and critical. Respectively, these refer to the case being exemplary for students’ experienced lives, mathematical ideas and competencies, and the formatting power of mathematics in society. By analysing epidemic modelling workshops with high school students in Denmark, we claim that it is possible to live up to this justification, though some challenges remain. Possibilities arise by invoking real scenarios as a departure point and scaffolding the modelling process in a dialogical setting. The main challenge is to balance the scaffolding and prompting with dialogical features in a limited timeframe.

References

Alrø, H., & Skovsmose, O. (2002). Dialogue and learning in mathematics education: Intention, reflection, critique. Kluwer.

Andersen, A. S., & Kjeldsen, T. H. (2015). A critical review of the key concepts in PPL. In A. S. Andersen & S. Heilesen (Eds.), The Roskilde model: Problem-oriented learning and project work (pp. 17–35). Springer.

Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., Raths, J., & Wittrock, M. (Eds.). (2001). The cognitive process dimension. In A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (pp. 63–92). Longman.

Andreasen, V, (1995). Matematisk infektionsepidemiologi. Lecture notes. Roskilde University, IMFUFA.

Artigue, M., & Blomhøj, M. (2013). Conceptualising inquiry-based education in mathematics. ZDM, The International Journal on Mathematics Education, 45(6), 797–810. https://doi.org/10.1007/¬s11858-013-0506-6

Bailey, N. T. (1986). Macro-modelling and prediction of epidemic spread at community level. Mathematical Modelling, 7(5-8), 689–717.

Barbosa, J. C. (2006). Mathematical modelling in classroom: A socio-critical and discursive perspective. Zentralblatt Für Didaktik Der Mathematik, 38(3), 293–301.

Beck, U. (1992). Risk society: Towards a new modernity. SAGE.

Beck, U. (2000). Risk society revisited: Theory, politics and research programmes. In B. Adam, U. Beck, & J. Van Loon (Eds.), Risk society and beyond: Critical issues for social theory (pp. 211–229). SAGE.

Blomhøj, M. (2020). Characterising modelling competency in students’ projects: Experiences from a natural science bachelor program. In G. A. Stillman, G. Kaiser, & C. E. Lampen (Eds.), Mathematical Modelling Education and Sense-making (pp. 395-406). Springer. https://doi.org/10.1007/978-3-030-37673-4_34

Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI-study (pp. 45–56). Springer.

Blomhøj, M., & Kjeldsen, T. H. (2011). Students’ reflections in mathematical modelling projects. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 385–396). Springer.

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716

Elicer, R. (2020). On the teaching and learning of probability and statistics in the perspective of Critical Mathematics Education [Doctoral dissertation, Roskilde University]. IMFUFA tekst – i, om og med matematik og fysik. 513. http://thiele.ruc.dk/imfufatekster/pdf/513.pdf

Ernest, P. (2010). The scope and limits of critical mathematics education. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical Mathematics Education: Past, Present and Future (pp. 65–87). Sense. https://doi.org/10.1163/9789460911644_007

Freire, P., & Macedo, D. (1987). Literacy: Reading the word and the world. Taylor and Francis.

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1, 155–177.

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99–107. https://doi.org/10.1080/00461520701263368

Illeris, K. (2002). Experiential learning. In The three dimensions of learning: Contemporary learning theory in the tension field between the cognitive, the emotional and the social. Roskilde University Press.

Kaiser, G., Blomhøj, M. & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling. ZDM: The International Journal on Mathematics Education, 38(2), 82–85. https://doi.org/10.1007/BF02655882

Kuntze, S., Aizikovitsh-Udi, E., & Clarke, D. (2017). Hybrid task design: connecting learning opportunities related to critical thinking and statistical thinking. ZDM Mathematics Education, 49(6), 923–935. https://doi.org/10.1007/s11858-017-0874-4

Negt, O. (1975). Sociologisk fantasi og eksemplarisk indlæring [Sociological imagination and exemplary learning]. Roskilde Universitetsforlag.

Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, meta-cognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). MacMillan.

Skovsmose, O. (1992). Democratic competence and reflective knowing in mathematics. For the Learning of Mathematics, 12(2), 2–11.

Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Kluwer Academic.

Skovsmose, O. (1998). Linking mathematics education and democracy: Citizenship, mathematical archaeology, mathemacy and deliberative interaction. Zentralblatt Für Didaktik Der Mathematik, 30(6), 195–203. https://doi.org/10.1093/humrep/deg124

Skovsmose, O. (2005). Travelling through education: Uncertainty, mathematics, responsibility. Sense.

Skovsmose, O. (2011). An Invitation to Critical Mathematics Education. Sense.

Wagenschein, M. (1956). Zum Begriff des exemplarischen Lehrens [On the concept of exemplary teaching]. Zeitschrift Für Pädagogik, 2, 129–156.

Downloads

Published

2021-12-31

How to Cite

Blomhøj, M., & Elicer, R. (2021). Epidemiological models and the problem of coherence: from the critical justification to a practice of teaching mathematical modelling. Quadrante, 30(2), 79–100. https://doi.org/10.48489/quadrante.23597

Issue

Section

Articles