Metacognitive strategies in modeling: comparison of the results achieved with the help of different methods

Authors

DOI:

https://doi.org/10.48489/quadrante.23653

Keywords:

modelling, metacognitive strategies, planning, students' perspectives, measurement of strategies, self-assessment

Abstract

Metacognition seems to have a great influence on modelling processes and the development of modelling competencies. In contrast to the assumed importance, a relatively small number of studies have been conducted so far, as metacognition is a rather complex concept and the measurement of students’ usage of metacognition is rather challenging. As part of the project, the use of metacognitive strategies when working on modelling tasks, as well as students' attitudes towards using them, were measured and evaluated using self-assessment questionnaires and interviews in form of stimulated recalls. In this paper, the outcome of the different methods will be compared and complemented by the analysis of the videotaped working process as a third data source. For this purpose, the self-assessments regarding the use of metacognitive strategies as well as statements in the interview of two students are considered as examples. Conclusions about the different methods and outcomes will be drawn.

References

Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137–175.

Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 73–96). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-12688-3_9

Buchholtz, N. (2019). Planning and conducting mixed methods studies in mathematics educational research. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 131–152). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-15636-7_6

Chalmers, C. (2009). Group metacognition during mathematical problem solving. In R. K. Hunter, B. A. Bicknell, & T. A. Burgess (Eds.), Crossing divides: MERGA 32 Conference Proceedings, (pp. 105–111). Palmerston North, New Zealand: MERGA.

Cooke, N. J., Salas, E., Kiekel, P. A., & Bell, B. (2004). Advances in measuring team cognition. In E. Salas & S. M. Fiore (Eds.), Team cognition: Understanding the factors that drive process and performance (pp. 83–106). Washington, DC: American Psychological Assoc. https://doi.org/10.1037/10690-005

Efklides, A. (2008). Metacognition. European Psychologist, 13(4), 277–287. https://doi.org/10.1027/1016-9040.13.4.277

Gass, S. M., & Mackey, A. (2000). Stimulated recall methodology in second language research. Mahwah NJ: Erlbaum.

Goos, M. (2002). Understanding metacognitive failure. Journal of Mathematical Behavior, 21(3), 283–302. https://doi.org/10.1016/S0732-3123(02)00130-X

Goos, M., Galbraith, P., & Renshaw, P. (2002). Socially mediated metacognition: Creating collaborative zones of proximal development in small group problem solving. Educational Studies in Mathematics, 49, 193–223. https://doi.org/10.1023/A:1016209010120

Hankeln, C., Adamek, C., & Greefrath, G. (2019). Assessing sub-competencies of mathematical modelling – Development of a new test instrument. In G. A. Stillman & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp. 143–160). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-14931-4_8

Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 110–119). Chichester: Horwood Publishing. https://doi.org/10.1533/9780857099419.3.110

Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. A. Stillman, W. Blum, & M. Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 129–149). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-18272-8_10

Krüger, A. (2021). Metakognition beim mathematischen modellieren. Strategieeinsatz aus schülerperspektive. Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-33622-6

Kuckartz, U. (2019). Qualitative text analysis: A systematic approach. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 181–197). Cham, Switzerland. https://doi.org/10.1007/978-3-030-15636-7_8

Leiss, D., Möller, V., & Schukajlow, S. (2006). Bier für den regenwald. Diagnostizieren und fördern mit modellierungsaufgaben. Friedrich Jahresheft, 24, 89–91.

Maaß, K. (2006). What are modelling competencies? ZDM - Mathematics Education, 38(2), 113–142. https://doi.org/10.1007/BF02655885

Ng, K. E. D. (2010). Partial metacognitive blindness in collaborative problem solving. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education (pp. 446–453). St Lucia, Qld.: MERGA.

Ohtani, K., & Hisasaka, T. (2018). Beyond intelligence: A meta-analytic review of the relationship among metacognition, intelligence, and academic performance. Metacognition and Learning, 13(2), 179–212. https://doi.org/10.1007/s11409-018-9183-8

Rogat, T. K., & Adams-Wiggins, K. R. (2014). Other-regulation in collaborative groups: Implications for regulation quality. Instructional Science, 42(6), 879–904. https://doi.org/10.1007/s11251-014-9322-9

Schellings, G. L.M. (2011). Applying learning strategy questionnaires: Problems and possibilities. Metacognition and Learning, 6(2), 91–109. https://doi.org/10.1007/s11409-011-9069-5

Schellings, G., van Hout-Wolters, B., Veenman, M., & Meijer, J. (2013). Assessing metacognitive activities: The in-depth comparison of a task-specific questionnaire with think-aloud protocols. European Journal of Psychology of Education, 28(3), 963–990. https://doi.org/10.1007/s10212-012-0149-y

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York, NY: MacMillan.

Schraw, G. (2009). Measuring metacognitive judgments. In A. C. Graesser, D. J. Hacker, & J. Dunlosky (Eds.), Handbook of metacognition in education (pp. 415–429). New York, NY: Routledge.

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351–371. https://doi.org/10.1007/BF02212307

Schukajlow, S., & Krug, A. (2013). Planning, monitoring and multiple solutions while solving modelling problems. In A. M. Lindmeier & A. Heinze (Eds.), Mathematics learning across the life span: Proceedings of the 37th Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 177–184). Kiel, Germany: PME.

Schukajlow, S., & Leiß, D. (2011). Selbstberichtete strategienutzung und mathematische modellierungskompetenz. Journal für Mathematikdidaktik 32, 53–77. https://doi.org/10.1007/s13138-010-0023-x

Stillman, G. A. (2004). Strategies employed by upper secondary students for overcoming or exploiting conditions affecting accessibility of applications tasks. Mathematics Education Research Journal, 16(1), 41–71. https://doi.org/10.1007/BF03217390

Stillman, G. A. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. A. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165–180). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-0910-2

Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157–194. https://doi.org/10.1023/A:1003246329257

Vauras, M., Iiskala, T., Kajamies, A., Kinnunen, R., & Lehtinen, E. (2003). Shared-regulation and motivation of collaborating peers: A case analysis. PSYCHOLOGIA – An International Journal of Psychology in the Orient, 46(1), 19–37. https://doi.org/10.2117/psysoc.2003.19

Veenman, M. V. J. (2011a). Alternative assessment of strategy use with self-report instruments: A discussion. Metacognition and Learning, 6(2), 205–211. https://doi.org/10.1007/s11409-011-9080-x

Veenman, M. V. J. (2011b). Learning to self-monitor and self-regulate. In P. A. Alexander & R. E. Mayer (Eds.), Handbook of research on learning and instruction (pp. 197–218). New York: Routledge. https://doi.org/10.4324/9780203839089.ch10

Veenman, M. V. J., & Elshout, J. J. (1999). Changes in the relation between cognitive and metacognitive skills during the acquisition of expertise. European Journal of Psychology of Education, 14(4), 509–523. https://doi.org/10.1007/BF03172976

Volet, S., Summers, M., & Thurman, J. (2009). High-level co-regulation in collaborative learning: How does it emerge and how is it sustained? Learning and Instruction, 19(2), 128–143. https://doi.org/10.1016/j.learninstruc.2008.03.001

Vorhölter, K. (2017). Measuring metacognitive modelling competencies. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications. Crossing and researching boundaries in mathematics education (pp. 175–185). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-62968-1_15

Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumptions. ZDM – Mathematics Education, 50(1-2), 343–354. https://doi.org/10.1007/s11858-017-0909-x

Vorhölter, K. (2019). Enhancing metacognitive group strategies for modelling. ZDM – Mathematics Education, 51, 703 – 716. https://doi.org/10.1007/s11858-019-01055-7

Vorhölter, K., Krüger, A., & Wendt, L. (2019). Metacognition in mathematical modeling – An overview. In S. A. Chamberlin & B. Sriraman (Eds.), Advances in mathematics education. Affect in mathematical modeling (pp. 29–51). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-04432-9_3

Weinert, F. E. (1984). Metakognition und motivation als determinanten der lerneffektvität: Einführung und überblick. In F. E. Weinert, R. H. Kluwe, & A. L. Brown (Eds.), Metakognition, motivation und lernen (pp. 9–21). Stuttgart, Germany: Kohlhammer.

Downloads

Published

2021-06-30

How to Cite

Vorhölter, K., & Krüger, A. (2021). Metacognitive strategies in modeling: comparison of the results achieved with the help of different methods. Quadrante, 30(1), 178–197. https://doi.org/10.48489/quadrante.23653

Issue

Section

Articles