Teaching for mathematical competence: the different foci of modelling competency and problem solving competency
DOI:
https://doi.org/10.48489/quadrante.23691Keywords:
mathematical competencies, mathematical modelling competency, mathematical problem solving competency, mathematisation competency, task designAbstract
In this article, I argue that it is opportune to work with students’ (mathematical) modelling competency and (mathematical) problem solving competency as two essentially different learning objectives. Such a distinction can be used to facilitate communication when establishing a general agenda in and around the classroom, and especially when developing and/or selecting suitable challenges for students. I begin by outlining what characterises the two competencies. I then highlight core differences, both at an abstract and more concrete level, by analysing how various types of exemplary student tasks can be formulated. Finally, I briefly discuss some of my own experiences when using the presented analytical approach in research and development projects and point towards possible avenues for future research, development, and debate by drawing up two hypotheses concerning which types of tasks dominate compulsory mathematics education and why.
References
Abrantes, P. (2001). Mathematical competencies for all: Options, implications and obstacles. Educational Studies in Mathematics, 47(2), 125-143. https://doi.org/10.1023/A:1014589220323
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM, 45(6), 797-810. https://doi.org/10.1007/s11858-013-0506-6
Blomhøj, M. (2006). Konstruktion af episoder som forskningsmetode – læringsmuligheder i IT-støttet matematikundervisning [Construction of episodes as a research method – opportunities to learning in an IT-facilitated mathematics teaching]. In O. Skovsmose, & M. Blomhøj (Eds.), Kunne det tænkes? – om matematiklæring [Is it possible? – on learning mathematics] (pp. 228‑254). Malling Beck.
Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22, 123-139. https://doi.org/10.1093/teamat/22.3.123
Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. Galbraith, H. Henn, & M. Niss (Eds.), Applications and modelling in mathematics education: The 14th IMCI Study (pp. 45-56). Springer.
Blum, W., Drüke-Noe, C., Hartung, R., & Köller, O. (Eds.). (2006). Bildungsstandards Mathematik: konkret. Cornelsen-Scriptor.
Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Horwood.
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37-68. https://doi.org/10.1007/BF00302716
Blum, W., Vogel, S., Drüke-Noe, C., & Roppelt, A. (Eds.). (2015). Bildungsstandards aktuell: Mathematik in der sekundarstufe II. Schrödel.
Brousseau, G. (1997). Theory of didactical situations in mathematics. Kluwer.
Børne- og Undervisningsministeriet (2019). Matematik – Fælles Mål – 2019 [Mathematics – Common Objectives – 2019]. Copenhagen, Denmark: Ministry of Education. www.emu.dk
Christiansen, I. M. (2001). Critical evaluation of models in relation to the modelling process. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education: ICTMA 9: Applications in science and technology (pp. 391-400). Horwood.
Greer, B., & Verschaffel, L. (2007). Modelling competencies – Overview. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI Study (pp. 219-224). Springer.
Gregersen, P., Højgaard, T., Larsen, L. H., Pedersen, B. B., & Thorbjørnsen, H. (2016). Matematrix 9. 2. Ed. Alinea. Mathematics textbook for grade 9.
Højgaard, T. (2010). Communication: The essential difference between mathematical modeling and problem solving. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 255-264). Springer. https://doi.org/10.1007/978-1-4419-0561-1_22
Højgaard, T. (2019). Competencies and textbook development: A three-dimensional content model enacted in the Danish textbook series Matematrix for Grades k-9. In S. Rezat, L. Fan, M. Hattermann, J. Schumacher, H. Wuschke (Eds.), Proceedings of the Third International Conference on Mathematics Textbook Research and Development (pp. 197-202). Universitäts-bibliothek Paderborn.
Højgaard, T., & Sølberg, J. (2019). Competencies and curricula: Two case stories of two-dimensional curriculum development. European Journal of Science and Mathematics Education, 7(1), 50-60. https://doi.org/10.30935/scimath/9533
Højgaard, T., & Winther, N. (2021). Facilitering af kompetencemålstyret matematikundervisning: Erfaringer med kommunalt forankret, skolebaseret udvikling af lærerkompetencer [Facilitating mathematics education guided by competency objectives: Experiences with municipality anchored, school-based development of teacher competencies]. MONA, 1, 50-68.
Jensen, T. H. (2007a). Udvikling af matematisk modelleringskompetence som matematikunder-visningens omdrejningspunkt – hvorfor ikke? [Developing mathematical modelling competency as the hub of mathematics education – why not?] (Ph.D. Dissertation). Roskilde University, Denmark. https://rucforsk.ruc.dk/ws/portalfiles/portal/2051535/IMFUFA_458.pdf
Jensen, T. H. (2007b). Assessing mathematical modelling competency. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 141-148). Horwood.
Jensen, T. H. (2009). Modellering versus problemløsning – om kompetencebeskrivelser som kommu-nikationsværktøj [Modelling versus problem solving – on description of competencies as a communicative tool]. MONA, 2, 37-54.
Kaiser, G., & Brand, S. (2015). Modelling competencies: Past development and further perspectives. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 129-149). Springer. https://doi.org/10.1007/978-3-319-18272-8_10
Lesh, R., & Doerr, H. M. (Eds.) (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Lawrence Erlbaum.
Lesh, R., Galbraith, P., Haines, C., & Hurford, A. (Eds.) (2010). Modeling students’ mathematical modeling competencies. Springer.
Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998
Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester, Jr. (Ed.) (2007), Second handbook of research on mathematics teaching and learning (pp. 763-804). Information Age.
National Research Council (2001). Adding it up: Helping children learn mathematics. National Academy Press. https://doi.org/10.17226/9822
NGA Center & CCSSO (2010). Common core state standards for mathematics. NGA Center & CCSSO (National Governors Association Center for Best Practices & Council of Chief State School Officers). www.corestandards.org
Niss, M. (2010). Modelling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 43–59). Springer. https://doi.org/10.1007/978-1-4419-0561-1_4
Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge.
Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102, 9-28. https://doi.org/10.1007/s10649-019-09903-9
Niss, M., & Højgaard, T. (forthcoming). Mathematical competencies in mathematics education: Past, present, and future. Springer.
Niss, M., & Jensen, T. H. (2002). Kompetencer og matematiklæring – Ideer og inspiration til udvikling af matematikundervisning i Danmark [Competencies and mathematical learning – ideas and inspiration for the development of mathematics teaching and learning in Denmark]. The Ministry of Education.
Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM, 48(5), 611-632. https://doi.org/10.1007/s11858-016-0799-3
OECD. (1999). Measuring student knowledge and skills – A new framework for assessment. OECD, Programme for International Student Assessment (PISA).
Schoenfeld, A. (1985). Mathematical problem solving. Academic Press.
Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). Macmillan.
Shavelson, R. J. (2010). On the measurement of competency. Empirical Research in Vocational Education and Training, 2(1), 41-63. https://doi.org/10.1007/BF03546488
Stillman, G. A., Blum, W., & Biembengut, M. S. (2015). Cultural, social, cognitive and research influences on mathematical modelling education. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 1-32). Springer.
Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey, & R. Turner (Eds.), Assessing mathematical literacy (pp. 85-115). Springer. https://doi.org/10.1007/978-3-319-10121-7_4
Undervisningsministeriet (2009). Fælles Mål 2009 – Matematik [Common Objectives 2009 – Mathematics]. Ministry of Education.
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. https://doi.org/10.2307/749877
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) belongs to Quadrante. Nevertheless, we encourage articles to be published in institutional or personal repositories as long as their original publication in Quadrante is identified and a link to the journal's website is included.