Generalizing of algebraic patterns in mathematics teaching and learning via problem solving: an analysis of proposals by preservice teachers
DOI:
https://doi.org/10.48489/quadrante.23955Keywords:
mathematics teaching, algebraic thinking, initial teacher educationAbstract
The aim of the present study is to understand the planning of teaching proposals of preservice mathematics teachers to address the generalization of algebraic patterns in MTLvPS, directed to high school students. We adopted the assumptions of qualitative research, based on the descriptive and interpretive strand that generated the data analysis, obtained from the teaching proposals of 18 mathematics undergraduates to address high school contents. The results showed that the choices of mathematical situations involved the presentation of particular cases, obtaining solutions by constructing mathematical expressions, and foreseeing strategies for finding algebraic patterns on the part of future teachers. There are difficulties in conducting the process of algebraic generalization based on the use of particular cases, of discussing the search for regularities, and in articulating the mathematical expressions obtained based on the symbologies of the contexts of the mathematical situations. We conclude that using the MTLvPS to address the generalization of algebraic patterns contributes to delimit aspects that direct preservice mathematics teachers to learn to teach and to develop professionally.
References
Alajmi, A. H. (2016). Algebraic generalization strategies used by Kuwaiti pre-service teachers. International Journal of Science and Mathematics Education, 14(8), 1517–1534. https://doi.org/10.1007/s10763-015-9657-y
Bogdan, R., & Biklen, S. (1994). Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto Editora.
Cai, J., & Lester, F. (2012). Por que o ensino com resolução de problemas é importante para a aprendizagem do aluno? Boletim GEPEM, 60, 147-162. http://doi.org/10.4322/gepem.2014.008
Callejo, M. L., & Zapatera, A. (2014). Flexibilidad en la resolución de problemas de identificación de patrones lineales en estudiantes de educación secundaria. Bolema, 28(48), 64-88. http://doi.org/10.1590/1980-4415v28n48a04
Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathem-atical thinking (pp. 25-41). Kluwer Academic Publishers.
Echeverría, M. D. P., & Pozo, J. I. (1998). Aprender a resolver problemas e resolver problemas para aprender. In J. I. Pozo (Org.), A solução de problemas: aprender a resolver, resolver para aprender (pp. 13-42). ArtMed.
Fiorentini, D., Miorim, M. A., & Miguel, A. (1993). Contribuição para um repensar... a educação algébrica elementar. Pro-Posições, 4(1), 78–91. https://periodicos.sbu.unicamp.br/ojs/index.php/proposic/article/view/8644384
Giaconi, V., Perdomo-Díaz, J., Cerda, G., & Saadati, F. (2018). Prácticas docentes, autoeficacia y valor en relación con la resolución de problemas de matemáticas: diseño y validación de un cuestionario. Enseñanza de Las Ciencias, 36(3), 99-120. https://doi.org/10.5565/rev/ensciencias.2351
Hallagan, J. E., Rule, A. C., & Carlson, L. F. (2009). Elementary school pre-service teachers’ understandings of algebraic generalizations. The Mathematics Enthusiast, 6(1), 201-206. https://scholarworks.umt.edu/tme/vol6/iss1/16
Harel, G., & Tall, D. (1991). The general, the abstract, and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38-42. www.jstor.org/stable/40248005
Imbernón, F. (2011). Formação docente e profissional: formar-se para a mudança e a incerteza (9.ª ed.). Cortez.
İmre, S. Y., & Akkoç, H. (2012). Investigating the development of prospective mathematics teachers’ pedagogical content knowledge of generalising number patterns through school practicum. Journal of Mathematics Teacher Education, 15(3), 207–226. https://doi.org/10.1007/s10857-012-9203-6
Lannin, J. K. (2005). Generalization and justification: the challenge of introducing algebraic reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231-258. https://doi.org/10.1207/s15327833mtl0703_3
Lee, Y., Capraro, R. M., & Capraro, M. M. (2018). Mathematics teachers’ subject matter knowledge and pedagogical content knowledge in problem posing. International Electronic Journal of Mathematics Education, 13(2), 75-90. https://doi.org/10.12973/iejme/2698
Lester, F. K., & Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Ed.), Posing and solving ma¬thematical problems (pp. 117-135). Springer. https://doi.org/10.1007/978-3-319-28023-3_8
Marcelo, C. (2009). Desenvolvimento profissional docente: passado e futuro. Sísifo: Revista de Ciências da Educação, 8, 7-22. http://sisifo.ie.ulisboa.pt/index.php/sisifo/article/view/130
Mizukami, M. G. N. (2006). Aprendizagem da docência: conhecimento específico, contextos e práticas pedagógicas. In A. M. Nacarato, & M. A. V. Paiva (Ed.), A formação do professor que ensina matemática: perspectivas e pesquisas (pp. 213-231). Autêntica.
Moguel, L. E. S., Landa, E. A., & Cabañas-Sánchez, G. (2019). Characterization of inductive reasoning in middle school mathematics teachers in a generalization task. International Electronic Journal of Mathematics Education, 14(3), 563-581. https://doi.org/10.29333/iejme/5769
National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Author.
Pacheco, J. A. & Flores, M. A. (1999). Formação e avaliação de professores. Porto Editora.
Peruzzo, C. M. K. (2003). Da Observação participante à pesquisa-ação em comunicação: pressupostos epistemológicos e metodológicos. Anais do 26.º Congresso Brasileiro de Ciências da Comunicação. INTERCOM. http://www.intercom.org.br/papers/nacionais/2003/www/pdf/2003_coloquio_peruzzo.pdf
Pimentel, T., & Vale, I. (2012). Os padrões e o raciocínio indutivo em matemática. Quadrante, 21(2), 29–50. https://doi.org/10.48489/quadrante.22881
Ponte, J. P., & Branco, N. (2013). Pensamento algébrico na formação inicial de professores. Educar em Revista, 50, 135-155. http://doi.org/10.1590/S0104-40602013000400010
Proença, M. C. (2018). Resolução de Problemas: encaminhamentos para o ensino e a aprendizagem de Matemática em sala de aula. EdUEM.
Proença, M. C. (2019). Generalização de padrões algébricos no ensino via resolução de problemas: compreensão de licenciandos em matemática. Educação Matemática Pesquisa, 21(3), 419-437. http://doi.org/10.23925/1983-3156.2019vol21i3p419-437
Radford, L. (2006). Algebraic thinking and the generalization of patterns: a semiotic perspective. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. (Vol. 1, pp. 2-21). PME-NA.
Rivera, F. (2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73, 297-328. https://doi.org/10.1007/s10649-009-9222-0
Rivera, F. (2013). Teaching and learning patterns in school mathematics: psychological and pedagogical considerations. Springer.
Rodrigues, R. V., Cyrino, M. C., & Oliveira, H. (2019). Percepção profissional de futuros professores sobre o pensamento algébrico dos alunos na exploração de um caso multimídia. Quadrante, 28(1), 100–123. https://doi.org/10.48489/quadrante.22975
Schoenfeld, A. H. (2020). Mathematical practices, in theory and practice. ZDM Mathematics Education, 52, 1163-1175. https://doi.org/10.1007/s11858-020-01162-w
Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
Shroeder, T., & Lester, F. K. (1989). Developing understanding in mathematics via problem solving. In P. Traffon, & A. Shulte (Eds.), New directions for elementary school mathematics: 1989 Yearbook (pp. 31-42). Reston, VA: National Council of Teachers of Mathematics.
Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.2307/1175860
Son, J., & Lee, M. Y. (2021). Exploring the relationship between preservice teachers’ conceptions of problem solving and their problem-solving performances. International Journal of Science and Mathematics Education, 19(1), 129-150. https://doi.org/10.1007/s10763-019-10045-w
Tambunan, H. (2019). The effectiveness of the problem solving strategy and the scientific approach to students’ mathematical capabilities in high order thinking skills. International Electronic Journal of Mathematics Education, 14(2), 293-302. https://doi.org/10.29333/iejme/5715
Tardif, M. (2012). Saberes docentes e formação profissional (14.ª Ed.). Vozes.
Vale, I. (2013). Padrões em contextos figurativos: um caminho para a generalização em matemática. Revista Eletrônica de Educação Matemática, 8(2), 64-81. http://doi.org/10.5007/1981-1322.2013v8n2p64
Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: the tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics 49(3), 379-402. https://doi.org/10.1023/A:1020291317178
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) belongs to Quadrante. Nevertheless, we encourage articles to be published in institutional or personal repositories as long as their original publication in Quadrante is identified and a link to the journal's website is included.