Children’s intuitive knowledge about the concept of measurement

Authors

DOI:

https://doi.org/10.48489/quadrante.32674

Keywords:

elementary school grades, intuitive knowledge about measurement, units of measurement, logical invariants

Abstract

This study examines how children with different profiles in terms of the intuitive knowledge they have about measurement deal with two of the invariant principles that constitute this notion in relation to different magnitudes (capacity, mass, distance, and length). Fifty children attending the 1st and 2nd grades of elementary school completed two tasks. One task examined the ability to recognize the appropriate unit to measure a given magnitude. The other examined the ability to recognize the inverse relation between the size of the unit used to measure a given magnitude and the number of units needed to measure it. Cluster Analysis was used to define children’s profile. Two groups were then formed: one with children with a good domain of this notion, and the other with children with a more limited domain. The ability to recognise the appropriate unit to measure a given magnitude develops first, albeit in an elementary way, and that this varies according to the magnitude being considered. The understanding of the inverse relationship between the size of the unit and the number of units needed to measure something is independent of the magnitude being considered and of the unit of measurement that is associated to it. The results about children´s difficulties and possibilities are discussed based on the relations between the notion of measurement and the logical invariants that constitute this notion.

References

Battista, M. T. (2006). Understanding the development of students' thinking about length. Teaching Children Mathematics, 13(3), 140–146. https://doi.org/10.5951/TCM.13.3.0140

Bellemain, P. M. B., Bibiano, M. F. de A., & Souza, C. F. de. (2018). Estudar grandezas e medidas na educação básica. Em Teia. Revista de Educação Matemática e Tecnológica Iberoamericana, 9(1), 1–16. https://doi.org/10.36397/emteia.v9i1.234920

Brasil (2018). Ministério da Educação. Base Nacional Comum Curricular. Brasília.

Bragg, P., & Outhred, L. (2004). A measure of rulers: The importance of units in a measure. Proceedings of the 28th Annual Conference of the International Group for the Psychology of Mathematics Education, (pp. 159–165). IGMPE.

Carpenter, T. P., & Lewis, R. (1976). The development of the concept of a standard unit of measure in young children. Journal for research in Mathematics Education, 7(1), 53-58. https://doi.org/10.5951/jresematheduc.7.1.0053

Cheeseman, J., Mcdonough, A., & Clarke, D. (2011). Investigating children’s understanding of the measurement of mass. In J. Clark, B. Kissane, J. Mousley, T. Spencer, & S. Thornton (Eds.), Mathematics: Traditions and [New] Practices (Vol. 1, pp. 174–182). Australian Association of Mathematics Teachers and the Mathematics Education Research Group of Australasia.

Curry, M., Mitchelmore, M., & Outhred, L. (2006). Development of children’s understanding of length, area, and volume measurement principles. Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, (pp. 377–384). IGPME

Guimarães, G., Cavalcanti, M., & Evangelista, B. (2015). Compreensão de Escala nos Anos Iniciais. In R. Borba & G. Guimarães (Eds.). Pesquisa e atividades para o aprendizado matemático na educação infantil e nos anos iniciais do ensino fundamental (pp. 47–49). SBEM. http://www.sbembrasil.org.br/ebook/ebook.pdf

Kamii, C. (2006). Measurement of length: How can we teach it better? Teaching Children Mathematics, 13(3), 154–158. https://doi.org/10.5951/TCM.13.3.0154

Lee, S. (2012). Toddlers as mathematicians? Australasian Journal of Early Childhood, 37(1), 30–37.

Lefevre, J.-A., Skwarchuk, S-L., & Smith-Chant, B. (2009). Home numeracy experiences and children's math performance in the early school years. Canadian Journal of Behavioural Science, 41(2), 55–66. https://doi.org/10.1037/a0014532

MacDonald, A. (2010). Heavy thinking: Young children's theorizing about mass. Australian Primary Mathematics Classroom, 15(4), 4–8.

MacDonald, A., & Lowrie, T. (2011). Developing measurement concepts within context: Children’s representations of length. Mathematics Education Research Journal, 23(1), 27–42. https://doi.org/10.1007/s13394-011-0002-7

McDonough, A., & Cheeseman, J. (2014). Young learners' understandings about mass measurement: Insights from an open-ended task. Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education, (pp. 193–200). IGPME

Mcdonough, A., Cheeseman, J., & Ferguson, S. (2013). Young children’s emerging understandings of the measurement of mass. Australasian Journal of Early Childhood, 38(4), 13–20. https://doi.org/10.1177/1836939113038004

Miller, K. F. (1989). Measurement as a tool for thought: The role of measuring procedures in children’s understanding of quantitative invariance. Developmental Psychology, 25, 589–600. https://doi.org/10.1037/0012-1649.25.4.589

Moura, A. L., & Lorenzato, S. (2001). O medir de crianças pré-escolares. Zetetiké, 9, 7–42. https://doi.org/10.20396/zet.v9i15-16.8646932

Mulligan, J., Mitchelmore, M., & Prescott, A. (2005). Case studies of children’s development of structure in early mathematics: A two-year longitudinal study. Proceedings of the 29th Confe-ren¬ce of the International Group for the Psychology of Mathematics Education, (pp. 1–8). IGPME.

Nunes, T., & Bryant, P. (2007). Crianças fazendo matemática. Artes Médicas.

Nunes, T., Light, P., & Mason, J. (1993). Tools for thought: The measurement of length and area. Learning and Instruction, 3, 39–54. https://doi.org/10.1016/S0959-4752(09)80004-2

Nunes, T., Light, P., & Mason, J. (1995). Measurement as a social process. Cognition and Instruction, 13(4), 585–587. https://doi.org/10.1207/s1532690xci1304_9

Piaget, J., & Inhelder, B. (1983). O desenvolvimento das quantidades físicas na criança. Zahar.

Piaget, J., Inhelder, B., & Szeminska, A. (1960). The child’s conception of geometry. Routledge.

Piaget, J., & Moreau, A. (2001). The inversion of arithmetic operations. (R. L. Campbell, Trans.). In J. Piaget (Ed.), Studies in Reflecting Abstraction (pp. 69–86). Psychology Press.

Pytlak, M., & Maj-Tatsis, B. (2021). Young children’s intuitive understanding of measure sense and measurement. In J. Novotá, & H. Moraová (Eds.), Proceedings of the International Symposium Elementary Mathematics Teaching, (pp. 338–347). SEMT.

Serrazina, L., & Rodrigues, M. (2018). Formação de professores e desenvolvimento do sentido de número. In R. F. Carneiro, A. C. de Souza, & L. de F. Bertini (Eds.), A Matemática nos anos iniciais do ensino fundamental: Práticas de sala de aula e de formação de professores (pp. 137–161). SBEM. http://www.sbembrasil.org.br/files/ebook_matematica_iniciais.pdf .

Sharif-Rasslan, A., & Tabajah-Awawdy, J. (2022). Strategies used by kindergarten children to cover “maximal area” inside a rectangle. Journal of Cognitive Education & Psychology, 21(2). https://doi.org/10.1891/JCEP-2021-0005

Silva, C. X., & Lousada, F. M. (2001). Medir é comparar. Ática.

Spinillo, A. G. (2006). O sentido de número e sua importância na educação matemática. In M. R. F. Brito, (Ed.), Solução de problemas e a matemática escolar (pp. 83–111). Alínea.

Spinillo, A. G. (2018). Number sense in elementary school children: the uses and meanings given to numbers in different investigative situations (pp. 639–650). In K. Gabrieke, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited lectures from the 13th International Congress on Mathematical Education, (pp. 639–650). Springer.

Spinillo, A. G. & Batista, R. F. (2009). A sense of measurement: what do children know about the invariant principles of different types of measurement? Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, (pp. 161–168). IGPME

Spinillo, A. G. & Martins, R. M. F. B. (2015). Os princípios invariantes da noção de medida investigados a partir da perspectiva de sentido numérico. Temas em Psicologia, 23(1), 97–109. https://doi.org/10.9788/TP2015.1-07

Szilágyi, J., Clements, D. H., & Sarama, J. (2013). Young children's understandings of length measurement: Evaluating a learning trajectory. Journal for Research in Mathematics Education, 44(3), 581–620. https://doi.org/10.5951/jresematheduc.44.3.0581

Thompson, I. (2008). Teaching and learning early number. McGraw-Hill.

Torbeyns, J., Peters, G., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2018). Subtraction by addition strategy use in children of varying mathematical achievement level: A choice/no-choice study. Journal of Numerical Cognition, 4(1), 215–234. https://doi.org/10.5964/jnc.v4i1.77

Van de Walle, J. A. (2009). Matemática no ensino fundamental: Formação de professores e aplicação em sala de aula. Artmed.

Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes, & P. Bryant (Eds.). Learning and teaching mathematics: An international perspective, (pp. 5–28). Psychology Press.

Vergnaud, G. (2003). A gênese dos campos conceituais. In E. P. Grossi (Ed.), Por que ainda há quem há não aprende? A teoria, (pp. 21–64). Vozes.

Published

2024-07-31

How to Cite

Correa, J., Cruz, M. S. S., & Spinillo, A. G. (2024). Children’s intuitive knowledge about the concept of measurement. Quadrante, 33(1), 7–22. https://doi.org/10.48489/quadrante.32674

Issue

Section

Articles