A aprendizagem dos números racionais através de uma abordagem integrada das suas diferentes representações
DOI:
https://doi.org/10.48489/quadrante.27802Palavras-chave:
números racionais, ensino básico, representações, conversão entre representaçõesResumo
Este estudo tem como objetivo perceber que compreensão revelam os alunos do 5.º ano das diferentes representações simbólicas dos números racionais e da conversão entre elas, antes e após a realização de uma experiência de ensino que valoriza o uso de modelos geométricos. Os participantes são quatro alunos de uma turma e, para a recolha de dados, foram usados dois testes – inicial e final –, complementados com a realização de entrevistas semiestruturadas individuais. Os resultados indicam que, antes da experiência de ensino, os alunos tinham um conhecimento limitado das diferentes formas de representar simbolicamente números racionais e da conversão entre elas, que faziam procedimentalmente, ou seja, aplicando os respetivos algoritmos. Apenas mostravam mais familiaridade com a representação em fração. Após a experiência de ensino, estes alunos mostraram conhecimento das representações em fração, numeral decimal e percentagem e passaram a fazer conversões entre elas evidenciando compreensão concetual. O uso de modelos parece ter contribuído para o desenvolvimento das compreensões referidas.
Referências
Aksoy, N., & Yazlik, D. (2017). Student errors in fractions and possible causes of these errors. Journal of Educations and Training Studies, 5(11), 219-233. https://doi.org/10.11114/jets.v5i11.2679
Alkhateeb, M. (2019). Common errors in fractions and the thinking strategies that accompany them. International Journal of Instruction, 12(2), 339-416. https://doi.org/10.29333/iji.2019.12226a
Behr, M., & Post, T. (1992). Teaching rational number and decimal concepts. In T. Post (Ed.), Teaching mathematics in grades K-8: Research-based methods (2nd ed.) (pp. 201-248). Allyn and Bacon.
Bennett, A., Inglis, M., & Gilmore, C. (2019). The cost of multiple representations: Learning number symbols with abstract and concrete representations. Journal of Educational Psychology, 111(5), 847-860. https://doi.org/10.1037/edu0000318
Blomberg, J., Schukajlow, S., & Rellensmann, J. (2021). Why don’t you make a drawing? Motivations and strategy use in mathematical modelling. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education (online) (Vol. 2, pp. 111-119). PME.
Bruner, J. (1999). Para uma teoria da educação. Relógio d’Água.
Büscher, C. (2021). Teachers’ adaptions of the percentage bar model for creating different learning opportunities. International Electronic Journal of Mathematics Education, 16(3). https://doi.org/10.29333/iejme/10942
Cadez, T., & Kolar, V. (2018). How fifth-grade pupils reason about fractions: A reliance on part-whole subconstructs. Educational Studies in Mathematics, 99, 335-357. https://doi.org/10.1007/s10649-018-9838-z
Choy, B. H. (2021). Where to put the decimal point? Noticing opportunities to learn through typical problems. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education (online) (Vol. 2, pp. 180-188). PME.
Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. English, &. D. Kirshner (Eds.). Handbook of international research in mathematics education (pp. 481-503).
Cramer, K., Wyberg, T., & Leavitt, S. (2009). Rational Number Project: Fraction operations & initial decimal ideas. [Companion module to RNP: Fraction Lessons for the Middle Grades]. https://documents.pub/document/rational-number-project-college-of-education-and-number-project-fraction-operations.html?page=1
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1), 103–131. https://doi.org/10.1007/s10649-006-0400-z
Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Org.), Handbook of research on teaching (pp. 119-161). Macmillan.
Fosnot, C., & Dolk, M. (2002). Young mathematician at work: Constructing fractions, decimals and percents. Heinemann.
Gray, M., DeWolf, M., Bassok, M., & Holyoak, K. (2018). Dissociation between magnitude comparison and relation identification across different formats for rational numbers. Thinking & Reasoning, 24(2), 179-197. https://doi.org/10.1080/13546783.2017.1367327
Guerreiro, H., Serrazina, L., & Ponte, J. P. (2018a). Uma trajetória na aprendizagem dos números racionais através da percentagem. Educação Matemática Pesquisa, 20(1), 359-384. http://dx.doi.org/10.23925/1983-3156.2018v20i1p359-384
Guerreiro, H., Serrazina, L., & Ponte, J. P. (2018b). A percentagem na aprendizagem com compreensão dos números racionais. Zetetiké, 26(2), 354-374. https://doi.org/10.20396/zet.v26i2.8651281
Hawera, N., & Taylor, M. (2011). “Twenty percent free!” So how much does the original bar weigh? Australian Primary Mathematics Classroom, 16(4), 3-7.
Kara, F., & Incikabi, L. (2018). Sixth grade students’ skills of using multiple representations in addition and subtraction operations in fractions. International Electronic Journal of Elementary Education, 10(4), 463-474. https://doi.org/10.26822/iejee.2018438137
Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. Lester (Ed.), Second handbook of research on mathematics and learning (pp. 629-668). Information Age.
Lee, Y., Chen, H., & Chang, S. (2017). Learning effects of iconic representation animation teaching on the mathematics problem solving process. In Kasetsart University (Org.), Proceedings of the 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media) (pp. 1-4). Curran Associates. https://doi.org/10.1109/UMEDIA.2017.8074132.
Liu, R., Ding, Y., Zong, M., & Zhang, D. (2014). Concept development of decimals in Chinese elementary students: A conceptual change approach. School Science and Mathematics, 114(7), 326-338. https://doi.org/10.1111/ssm.12085
Morais, C., Serrazina, L., & Ponte, J. P. (2018a). Mathematical reasoning fostered by (fostering) transformations of rational number representations. Acta Scientiae, 20(4), 552-570. https://doi.org/10.17648/acta.scientiae.v20iss4id3892
Morais, C., Serrazina, L., & Ponte, J. P. (2018b). Números racionais no 1.º ciclo: Compreensão de grandeza e densidade apoiada pelo uso de modelos. Quadrante, 27(1), 25-45. https://doi.org/10.48489/quadrante.22963
Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: a new model and an experimental curriculum. Journal for Research in Mathematics Education, 30(2), 122-147. https://doi.org/10.2307/749607
Norton, A., Wilkins, J., & Xu, C. (2018). A progression of fraction schemes common to chinese and U.S. students. Journal for Research in Mathematics Education, 49(2), 210-226. https://doi.org/10.5951/jresematheduc.49.2.0210
Payne, J. N., & Allinger, G. D. (1984). Insights into teaching percent to general mathematics students. Unpublished manuscript, Montana State University, Department of Mathematical Sciences, Bozeman.
Pérez, J. C. (1997). Números decimais: Porquê? Para quê?. Editorial Sintesis.
Ponte, J. P. (2005). Gestão curricular em Matemática. In GTI (Ed.), O professor e o desenvolvimento curricular (pp. 11-34). APM.
Post, T., Cramer, K., Behr, M., Lesh, R., & Harel, G. (1993). Curriculum implications of research on the learning, teaching, and assessing of rational number concepts. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational numbers: An Integrations of Research (pp. 327-362). Lawrence Erlbaum Associates.
Roell, M., Viarouge, A., Houdé, O., & Borst, G. (2019). Inhibition of the whole number bias in decimal number comparison: A developmental negative priming study. Journal of Experimental Child Psychology, 117, 240-247. https://doi.org/10.1016/j.jecp.2018.08.010
Siegler, R. S., Fazio, L., Bailey, D., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13-19. https://doi.org/10.1016/j.tics.2012.11.004
Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145. https://doi.org/10.2307/749205
Tripathi, P. N. (2008). Developing mathematical understanding through multiple representations. Mathematics Teaching in the Middle School, 13(8), 438–445. https://doi.org/10.5951/MTMS.13.8.0438
Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.