Uma tarefa de integração do pensamento computacional na aprendizagem da função afim: Um estudo exploratório com alunos do 8.º ano
DOI:
https://doi.org/10.48489/quadrante.37041Palavras-chave:
pensamento computacional, pensamento funcional, função afim, matemática, 3.º cicloResumo
A recente introdução do pensamento computacional nos currículos de matemática exige investimento no design de recursos que promovam uma aprendizagem integrada do pensamento computacional e da matemática na sala de aula. Este estudo exploratório, realizado no contexto de uma experiência de ensino, discute como uma tarefa que integra o pensamento computacional no estudo de funções afins no 8.º ano contribui para o desenvolvimento das práticas de pensamento computacional e do pensamento funcional dos alunos. Adotou-se uma metodologia qualitativa, com dados recolhidos através de observação participante em duas turmas, com áudio e vídeo gravação, e dos trabalhos escritos dos alunos. As práticas de pensamento computacional visadas foram: abstração, decomposição, reconhecimento de padrões, análise e definição de algoritmos e o desenvolvimento de hábitos de depuração e otimização dos processos. A análise sobre o pensamento funcional focou-se nas representações de funções, generalização contextual e simbólica e modelação matemática. Os resultados mostram que as práticas de pensamento computacional e as dimensões do pensamento funcional foram integradas durante a resolução da tarefa pelos alunos, destacando-se o importante papel do contexto da tarefa e dos diferentes tipos de representação, especialmente, a representação codificada facilitada pelo Scratch, para apoiar os alunos a progredirem de exemplos concretos para situações mais gerais.
Referências
Barcelos, T. S., Muñoz, R., Villarroel, R., & Silveira, I. F. (2018). A systematic literature review on relationships between computational thinking and mathematics. Journal on Computational Thinking, 2(1), 23-35. https://doi.org/10.14210/jcthink.v2.n1.p23
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905
Bell, T., & Vahrenhold, J. (2018). CS unplugged—How is it used, and does it work? In Lecture Notes in Computer Science (Vol. 11011 LNCS, pp. 497–521). Springer. https://doi.org/10.1007/978-3-319-98355-4_29
Best, M., & Bikner-Ahsbahs, A. (2017). The function concept at the transition to upper secondary school level: tasks for a situation of change. ZDM - Mathematics Education, 49(6), 865–880. https://doi.org/10.1007/s11858-017-0880-6
Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into Algebra in the elementary grades. In J. Cai, & E &. Knuth (eds.), Early Algebraization: A global dialogue from multiple perspectives (pp. 5–23). Springer. https://doi.org/10.1007/978-3-642-17735-4_2
Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170–185. https://doi.org/10.1080/10986065.2020.1779012
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, 1. https://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
Cabral, J., Mendes, F., & Oliveira, H. (2022). A capacidade de noticing do pensamento algébrico dos alunos: um estudo na formação inicial. Quadrante, 31(1), 28–53. https://doi.org/10.48489/quadrante.27091
Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5
Canavarro, A. P., Mestre, C., Gomes, D., Santos, E., Santos, L., Brunheira, L., Vicente, M., Gouveia, M. J., Correia, P., Marques, P. M., & Espadeiro, R. G. (2021). Aprendizagens Essenciais de Matemática: 8.º ano. Direção-Geral da Educação. http://www.dge.mec.pt/sites/default/files/Curriculo/Aprendizagens_Essenciais/3_ciclo/ae_mat_8.o_ano.pdf
Chan, S. W., Looi, C. K., Ho, W. K., Huang, W., Seow, P., & Wu, L. (2021). Learning number patterns through computational thinking activities: A Rasch model analysis. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07922
Chan, S. W., Looi, C. K., Ho, W. K., & Kim, M. S. (2023). Tools and approaches for integrating Computational Thinking and Mathematics: A Scoping Review of Current Empirical Studies. Journal of Educational Computing Research, 60(8), 2036–2080. https://doi.org/10.1177/07356331221098793
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13.
Cui, Z., Ng, O., & Jong, M. S.-Y. (2023). Integration of Computational Thinking with Mathematical Problem-based Learning: Insights on Affordances for Learning. Educational Technology & Society, 26(2). 131-146. https://doi.org/10.30191/ETS.202304_26(2).0010
Evaristo, I. S., Terçariol, A. A. L., & Ikeshoji, E. A. B. (2022). Do pensamento computacional desplugado ao plugado no processo de aprendizagem da Matemática. Revista Latinoamericana de Tecnología Educativa, 21(1), 75–96. https://doi.org/10.17398/1695-288X.21.1.75
Gomes, T. C. S., Falcão, T. P., & Tedesco, P. C. D. A. R. (2018). Exploring an approach based on digital games for teaching programming concepts to young children. International Journal of Child-Computer Interaction, 16, 77-84. https://doi.org/10.1016/j.ijcci.2017.12.005
Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A Scoping Review of Studies on Computational Thinking in K–12 Mathematics Classrooms. Digital Experiences in Mathematics Education, 4(1), 48–69. https://doi.org/10.1007/s40751-017-0038-8
Israel, M., & Lash, T. (2020). From classroom lessons to exploratory learning progressions: mathematics + computational thinking. Interactive Learning Environments, 28(3), 362–382. https://doi.org/10.1080/10494820.2019.1674879
Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and Principles for Task Design. In A. Watson, & M. Ohtani (Eds.), Task Design in Mathematics Education: an ICMI Study 22 (pp. 19–81). Springer. https://doi.org/10.1007/978-3-319-09629-2_2
Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A Pedagogical Framework for Computational Thinking. Digital Experiences in Mathematics Education, 3(2), 154–171. https://doi.org/10.1007/s40751-017-0031-2
Martins, R., Viseu, F., & Rocha, H. (2023). Functional thinking: A study with 10th grade students. Education Sciences, 13(4), 335. https://doi.org/10.3390/educsci13040335
Menezes, L., Oliveira, H., & Canavarro, A. P. (2015). Inquiry-based teaching: The case of Célia. In U. Gellert, J. Gimenez Rodrigues, C. Hahn, & S. Kafoussi (Eds.), Educational paths to Mathematics (pp. 305-321). Springer International Publishing. https://doi.org/10.1007/978-3-319-15410-7_20
Nordby, S.K., Bjerke, A.H., & Mifsud, L. (2022). Computational thinking in the primary mathematics classroom: A systematic review. Digital Experiences in Mathematics Education, 8, 27–49. https://doi.org/10.1007/s40751-022-00102-5
Pinto, E., Cañadas, M. C., & Moreno, A. (2022). Functional relationships evidenced and representations used by third graders within a functional approach to Early Algebra. International Journal of Science and Mathematics Education, 20, 1183–1202. https://doi.org/10.1007/s10763-021-10183-0
Pitta-Pantazi, D., Chimoni, M., & Christou, C. (2020). Different types of algebraic thinking: An empirical study focusing on middle school students. International Journal of Science and Mathematics Education, 18, 965-984. https://doi.org/10.1007/s10763-019-10003-6
Qian, Y., & Choi, I. (2023) Tracing the essence: ways to develop abstraction in computational thinking. Education Technology Research and Development, 71, 1055–1078. https://doi.org/10.1007/s11423-022-10182-0
Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the Twenty Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 2–21). PME. http://www.luisradford.ca/pub/60_pmena06.pdf
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 133-160). Lawrence Erlbaum Associates.
Swan, M. (2014). Designing tasks and lessons that develop conceptual understanding, strategic competence and critical awareness. In A. Boavida, C. Delgado, E. Santos, F. Mendes, J. Brocardo, J. Duarte, L., Santos, M. Baía, & M. Figueiredo (Eds.), Encontro de Investigação em Educação Matemática (pp. 15-31). Sociedade Portuguesa de Investigação em Educação Matemática.
Warren, E., & Cooper, T. (2005). Young children’s ability to use the balance strategy to solve for unknowns. Mathematics Education Research Journal, 17(1), 58-72. http://dx.doi.org/10.1007/BF03217409
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
Wilkie, K.J., Ayalon, M. (2018). Investigating Years 7 to 12 students’ knowledge of linear relationships through different contexts and representations. Mathematic Education Research Journal, 30, 499–523. https://doi.org/10.1007/s13394-018-0236-8
Wing, J. M. (2006). Computational thinking. In Communications of the ACM (Vol. 49, Issue 3, pp. 33–35). Association for Computing Machinery. https://doi.org/10.1145/1118178.1118215
Ye, H., Liang, B., Ng, O. L., & Chai, C. S. (2023). Integration of computational thinking in K-12 mathematics education: a systematic review on CT-based mathematics instruction and student learning. International Journal of STEM Education, 10(3). https://doi.org/10.1186/s40594-023-00396-w
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Copyright (c) pertence à Quadrante. Contudo, encorajamos que os artigos sejam divulgados nos repositórios institucionais ou pessoais desde que seja identificada a sua publicação original na Quadrante e incluída a hiperligação para o site da revista.