Analysis of the complexity factors in individual solution plans and group developed solutions for real context estimation problems
DOI:
https://doi.org/10.48489/quadrante.23592Keywords:
modelling, estimation problems, pre-service teacher education, real-context problemsAbstract
Estimation problems in real context can be used as an introduction to mathematical modelling. In this study we started by collecting the individual solution plans of pre-service primary school teachers (N=224) who were given a sequence of contextualised estimation problems. Afterwards, the same students working in groups (N=63) solved the same problems by performing in situ measurements and estimations for each problem, and their solutions were also analysed and compared with their previous solution plans. In particular, the focus of the study is on the so-called complexity factors, which refer to the elements of the solution that are intended to obtain a more accurate estimate. The aim is to determine which complexity factors enrich individual solution plans and which ones enrich group solutions. Moreover, we identify which characteristics of the real context promote the inclusion of certain complexity factors, both in the individual solution plans and in the group developed solutions. The results allow us to identify the impact of fieldwork in the process of solving estimation tasks formulated in real contexts; related to the pre-service teacher's knowledge, the results allow us to identify shortcomings in the knowledge of mathematical tasks for teaching.
References
Albarracín, L., Ferrando, I., & Gorgorió, N. (2020). The role of context for characterising students’ strategies when estimating large numbers of elements on a surface. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-020-10107-4
Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educational Studies in Mathematics, 86(1), 79-96. https://doi.org/10.1007/s10649-013-9528-9
Albarracín, L., & Gorgorió, N. (2019). Using large number estimation problems in primary education classrooms to introduce mathematical modelling. International Journal of Innovation in Science and Mathematics Education, 27(2), 33–45. http://dx.doi.org/10.30722/IJISME.27.02.004
Anderson, P. M., & Sherman, C. A. (2010). Applying the Fermi estimation technique to business problems. Journal of Applied Business and Economics, 10(5), 33–42.
Arbaugh, F., Lannin, J., Jones, D. L., & Park-Rogers, M. (2006). Examining instructional practices of CorePlus lessons: Implications for professional development. Journal of Mathematics Teacher Education, 9, 517–550. https://doi.org/10.1007/s10857-006-9019-3
Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Mathematics Enthusiast, 6(3), 331–364.
Ärlebäck, J., & Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 597-609). New York: Springer. https://doi.org/10.1007/978-1-4419-0561-1_52
Ärlebäck, J. B., & Frejd, P. (2013). Modelling from the perspective of commognition–An emerging framework. In G. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 47–56). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6540-5_3
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389−407. https://doi.org/10.1177/0022487108324554
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716
Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of Railside School. Teachers College Record, 110(3), 608–645.
Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Cham, Switzerland: Springer international publisher. https://doi.org/10.1007/978-3-319-68072-9
Camacho, A. M. R., & Guerrero, L. S. (2019). Conocimiento especializado del profesor de primaria en formación: un estudio de caso de la enseñanza de la noción de razón. Quadrante, 28(2), 100-124. https://doi.org/10.48489/quadrante.23029
Carlson, J. E. (1997). Fermi problems on gasoline consumption. The Physics Teacher, 35(5), 308–309.
Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics Teacher Education, 16(1), 1-6. https://doi.org/10.1007/s10857-013-9234-7
Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT: International Journal on Mathematics, Science and Technology Education, 3(1), 19-36. https://doi.org/10.31129/lumat.v3i1.1049
Czocher, J. A. (2016). Introducing modeling transition diagrams as a tool to connect mathematical modeling to mathematical thinking. Mathematical Thinking and Learning, 18(2), 77-106. https://doi.org/10.1080/10986065.2016.1148530
Efthimiou, C. J., & Llewellyn, R. A. (2006). Avatars of Hollywood in physical science. The Physics Teacher, 44, 28–33. https://doi.org/10.1119/1.2150756
Ferrando, I., & Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: Analysis of emerging models. Mathematics Education Research Journal, 33(1), 61-78. https://doi.org/10.1007/s13394-019-00292-z
Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017). Análisis de los modelos matemáticos producidos durante la resolución de problemas de Fermi. Bolema: Boletim de Educação Matemática, 31(57), 220-242. https://doi.org/10.1590/1980-4415v31n57a11
Ferrando, I., & Segura, C. (2020). Fomento de la flexibilidad matemática a través de una secuencia de tareas de modelización. Avances de Investigación en Educación Matemática, 17, 84-97. https://doi.org/10.35763/aiem.v0i17.306
Ferrando, I., Segura, C., & Pla-Castells, M. (2020). Relations entre contexte, situation et schéma de résolution dans les problèmes d’estimation. Canadian Journal of Science, Mathematics and Technology Education, 20(3), 557-573. https://doi.org/10.1007/s42330-020-00102-w
Ferrando, I., Segura, C., & Pla-Castells, M. (2021). Analysis of the relationship between context and solution plan in modelling tasks involving estimations. In F. K. S. Leung, G. A. Stillman, G. Kaiser & K. L. Wong (Eds.), Mathematical Modelling Education in East and West (pp. 119-128). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_10
García, J. M. (2013). Problemas de Fermi. Suposición, estimación y aproximación. Epsilon, 30(2), 57-68.
Goldin, G. A., & McClintock, C. E. (Eds.) (1979). Task Variables in Mathematical Problem Solving. Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.
Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129. https://doi.org/10.1023/A:1003749919816
Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293-307. https://doi.org/10.1016/S0959-4752(97)00006-6
Haberzettl, N., Klett, S., & Schukajlow, S. (2018). Mathematik rund um die Schule—Modellieren mit Fermi-Aufgaben. In K. Eilerts, & K. Skutella (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 5. Ein ISTRON-Band für die Grundschule (pp. 31–41). Wiesbaden: Springer Spectrum.
Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., Chui, A. M-Y., Wearne, D., Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, W., Manaster, C., Gonzales, P., & Stigler, J. W. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington, DC: National Center for Education Statistics.
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302-310. https://doi.org/10.1007/BF02652813
Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. In L. L. Hatfield & D. A. Bradbard (Eds.), Mathematical Problem Solving: Papers from a Research Workshop (pp. 14-27). Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.
Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the learning of mathematics, 26(1), 42-47.
Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37-58. https://doi.org/10.1007/s10649-007-9083-3
Peter-Koop, A. (2009). Teaching and Understanding Mathematical Modelling through Fermi-Problems. In B. Clarke, B. Grevholm & R. Millman (Eds.), Tasks in primary mathematics teacher education (pp. 131-146). Dordrecht: Springer.
Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.
Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
Sriraman, B., & Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7
Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50–80. https://doi.org/10.1080/1380361960020103
Thompson, A. G. (1985). Teachers’ conceptions of mathematics and the teaching of problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 281-294). Hillsdale, NJ: Erlbaum.
Tirosh, D., Tirosh, C., Graeber, A., & Wilson, J. (1991). Computer-based intervention to correct preservice teachers' misconceptions about the operation of division. Journal of Computers in Mathematics and Science Teaching, 10, 71-78.
Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28, 577-601. https://doi.org/10.2307/749692
Webb, N. L. (1980). Content and context variables in problem tasks. In G. A. Goldin & C. E. McClintock (Eds.), Task Variables in Mathematical Problem Solving. Philadelphia, PA: The Franklin Institute Press.
Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41-65. https://doi.org/10.1007/s10649-015-9595-1
Wilkie, K. J. (2016). Rise or resist: Exploring senior secondary students’ reactions to challenging mathematics tasks incorporating multiple strategies. Eurasia Journal of Mathematics, Science and Technology Education, 12(8), 2061-2083. https://doi.org/10.12973/eurasia.2016.1260a
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) belongs to Quadrante. Nevertheless, we encourage articles to be published in institutional or personal repositories as long as their original publication in Quadrante is identified and a link to the journal's website is included.