Análisis de los factores de complejidad en planes de resolución individuales y resoluciones grupales de problemas de estimación de contexto real

Autores

DOI:

https://doi.org/10.48489/quadrante.23592

Palavras-chave:

modelización, problemas de estimación, formación de maestros, problemas de contexto real

Resumo

Los problemas de estimación en contexto real pueden utilizarse como iniciación en la elaboración de modelos matemáticos. En este estudio se recogieron los planes de resolución individuales de estudiantes (N=224) del grado de Maestro/a en Educación Primaria que se enfrentaron a una secuencia de problemas de estimación contextualizados. Posteriormente, esos mismos estudiantes trabajando en grupos (N=63), resolvieron los mismos problemas realizando mediciones y estimaciones in situ. Así, el estudio se centra en los denominados factores de complejidad, referidos a los aspectos de la resolución con los que se pretende obtener una estimación más precisa.  El objetivo es determinar qué factores de complejidad enriquecen los planes de resolución individuales y cuáles son los que enriquecen las resoluciones grupales. Además, se iden­tifica qué características del contexto real promueven que los estudiantes incluyan determinados factores de complejidad, tanto en los planes de resolución individual como en las resoluciones grupales. Los resultados permiten identificar el impacto del trabajo de campo en el proceso de resolución de tareas de estimación formuladas en contextos reales cercanos; en relación al conocimiento del profesor en formación, los resultados permiten identificar carencias en el conocimiento de las tareas matemáticas para la enseñanza.

Referências

Albarracín, L., Ferrando, I., & Gorgorió, N. (2020). The role of context for characterising students’ strategies when estimating large numbers of elements on a surface. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-020-10107-4

Albarracín, L., & Gorgorió, N. (2014). Devising a plan to solve Fermi problems involving large numbers. Educational Studies in Mathematics, 86(1), 79-96. https://doi.org/10.1007/s10649-013-9528-9

Albarracín, L., & Gorgorió, N. (2019). Using large number estimation problems in primary education classrooms to introduce mathematical modelling. International Journal of Innovation in Science and Mathematics Education, 27(2), 33–45. http://dx.doi.org/10.30722/IJISME.27.02.004

Anderson, P. M., & Sherman, C. A. (2010). Applying the Fermi estimation technique to business problems. Journal of Applied Business and Economics, 10(5), 33–42.

Arbaugh, F., Lannin, J., Jones, D. L., & Park-Rogers, M. (2006). Examining instructional practices of CorePlus lessons: Implications for professional development. Journal of Mathematics Teacher Education, 9, 517–550. https://doi.org/10.1007/s10857-006-9019-3

Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Mathematics Enthusiast, 6(3), 331–364.

Ärlebäck, J., & Bergsten, C. (2010). On the use of realistic Fermi problems in introducing mathematical modelling in upper secondary mathematics. In R. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 597-609). New York: Springer. https://doi.org/10.1007/978-1-4419-0561-1_52

Ärlebäck, J. B., & Frejd, P. (2013). Modelling from the perspective of commognition–An emerging framework. In G. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 47–56). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-6540-5_3

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389−407. https://doi.org/10.1177/0022487108324554

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of Railside School. Teachers College Record, 110(3), 608–645.

Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Cham, Switzerland: Springer international publisher. https://doi.org/10.1007/978-3-319-68072-9

Camacho, A. M. R., & Guerrero, L. S. (2019). Conocimiento especializado del profesor de primaria en formación: un estudio de caso de la enseñanza de la noción de razón. Quadrante, 28(2), 100-124. https://doi.org/10.48489/quadrante.23029

Carlson, J. E. (1997). Fermi problems on gasoline consumption. The Physics Teacher, 35(5), 308–309.

Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics Teacher Education, 16(1), 1-6. https://doi.org/10.1007/s10857-013-9234-7

Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT: International Journal on Mathematics, Science and Technology Education, 3(1), 19-36. https://doi.org/10.31129/lumat.v3i1.1049

Czocher, J. A. (2016). Introducing modeling transition diagrams as a tool to connect mathematical modeling to mathematical thinking. Mathematical Thinking and Learning, 18(2), 77-106. https://doi.org/10.1080/10986065.2016.1148530

Efthimiou, C. J., & Llewellyn, R. A. (2006). Avatars of Hollywood in physical science. The Physics Teacher, 44, 28–33. https://doi.org/10.1119/1.2150756

Ferrando, I., & Albarracín, L. (2021). Students from grade 2 to grade 10 solving a Fermi problem: Analysis of emerging models. Mathematics Education Research Journal, 33(1), 61-78. https://doi.org/10.1007/s13394-019-00292-z

Ferrando, I., Albarracín, L., Gallart, C., García-Raffi, L. M., & Gorgorió, N. (2017). Análisis de los modelos matemáticos producidos durante la resolución de problemas de Fermi. Bolema: Boletim de Educação Matemática, 31(57), 220-242. https://doi.org/10.1590/1980-4415v31n57a11

Ferrando, I., & Segura, C. (2020). Fomento de la flexibilidad matemática a través de una secuencia de tareas de modelización. Avances de Investigación en Educación Matemática, 17, 84-97. https://doi.org/10.35763/aiem.v0i17.306

Ferrando, I., Segura, C., & Pla-Castells, M. (2020). Relations entre contexte, situation et schéma de résolution dans les problèmes d’estimation. Canadian Journal of Science, Mathematics and Technology Education, 20(3), 557-573. https://doi.org/10.1007/s42330-020-00102-w

Ferrando, I., Segura, C., & Pla-Castells, M. (2021). Analysis of the relationship between context and solution plan in modelling tasks involving estimations. In F. K. S. Leung, G. A. Stillman, G. Kaiser & K. L. Wong (Eds.), Mathematical Modelling Education in East and West (pp. 119-128). Cham: Springer. https://doi.org/10.1007/978-3-030-66996-6_10

García, J. M. (2013). Problemas de Fermi. Suposición, estimación y aproximación. Epsilon, 30(2), 57-68.

Goldin, G. A., & McClintock, C. E. (Eds.) (1979). Task Variables in Mathematical Problem Solving. Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129. https://doi.org/10.1023/A:1003749919816

Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 7(4), 293-307. https://doi.org/10.1016/S0959-4752(97)00006-6

Haberzettl, N., Klett, S., & Schukajlow, S. (2018). Mathematik rund um die Schule—Modellieren mit Fermi-Aufgaben. In K. Eilerts, & K. Skutella (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 5. Ein ISTRON-Band für die Grundschule (pp. 31–41). Wiesbaden: Springer Spectrum.

Hiebert, J., Gallimore, R., Garnier, H., Givvin, K. B., Hollingsworth, H., Jacobs, J., Chui, A. M-Y., Wearne, D., Smith, M., Kersting, N., Manaster, A., Tseng, E., Etterbeek, W., Manaster, C., Gonzales, P., & Stigler, J. W. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington, DC: National Center for Education Statistics.

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302-310. https://doi.org/10.1007/BF02652813

Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. In L. L. Hatfield & D. A. Bradbard (Eds.), Mathematical Problem Solving: Papers from a Research Workshop (pp. 14-27). Ohio: Information Reference Center (ERIC/IRC), The Ohio State University.

Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the learning of mathematics, 26(1), 42-47.

Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37-58. https://doi.org/10.1007/s10649-007-9083-3

Peter-Koop, A. (2009). Teaching and Understanding Mathematical Modelling through Fermi-Problems. In B. Clarke, B. Grevholm & R. Millman (Eds.), Tasks in primary mathematics teacher education (pp. 131-146). Dordrecht: Springer.

Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Madrid: Síntesis.

Schoenfeld, A. H. (1991). On mathematics as sense-making: An informal attack on the unfortunate divorce of formal and informal mathematics. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23. https://doi.org/10.17763/haer.57.1.j463w79r56455411

Sriraman, B., & Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205-223. https://doi.org/10.1007/s10780-009-9090-7

Stein, M. K., & Lane, S. (1996). Instructional tasks and the development of student capacity to think and reason: An analysis of the relationship between teaching and learning in a reform mathematics project. Educational Research and Evaluation, 2(1), 50–80. https://doi.org/10.1080/1380361960020103

Thompson, A. G. (1985). Teachers’ conceptions of mathematics and the teaching of problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 281-294). Hillsdale, NJ: Erlbaum.

Tirosh, D., Tirosh, C., Graeber, A., & Wilson, J. (1991). Computer-based intervention to correct preservice teachers' misconceptions about the operation of division. Journal of Computers in Mathematics and Science Teaching, 10, 71-78.

Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28, 577-601. https://doi.org/10.2307/749692

Webb, N. L. (1980). Content and context variables in problem tasks. In G. A. Goldin & C. E. McClintock (Eds.), Task Variables in Mathematical Problem Solving. Philadelphia, PA: The Franklin Institute Press.

Wijaya, A., van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41-65. https://doi.org/10.1007/s10649-015-9595-1

Wilkie, K. J. (2016). Rise or resist: Exploring senior secondary students’ reactions to challenging mathematics tasks incorporating multiple strategies. Eurasia Journal of Mathematics, Science and Technology Education, 12(8), 2061-2083. https://doi.org/10.12973/eurasia.2016.1260a

Publicado

2021-06-30

Como Citar

Segura Cordero, C., Ferrando, I., & Albarracín, L. (2021). Análisis de los factores de complejidad en planes de resolución individuales y resoluciones grupales de problemas de estimación de contexto real. Quadrante, 30(1), 31–51. https://doi.org/10.48489/quadrante.23592

Edição

Secção

Artigos