Mathematical modelling in statistical activities: identifying key elements of design to promote model generation in the study of variability

Authors

DOI:

https://doi.org/10.48489/quadrante.23686

Keywords:

mathematical modeling, modelling-eliciting activities, secondary education, statistics, variability

Abstract

In our work we are interested in promoting the learning of statistical knowledge through mathematical modelling. We use statistical problems where real social phenomena are studied from large amounts of data and that comply with the design principles of the Modelling Eliciting Activities with secondary school students (15 years old). The tasks are aimed at promoting the development of the concept of variability and applying it to understand the situation studied using a mathematical model. In this study we focus on characterizing the mathematical models that students develop in a statistical modelling activity, trying to identify why elements are integrated into the model or discarded, as students conceptualize variability. For this purpose, a qualitative analysis is carried out on the basis of recordings of the students' group work in the classroom. The results obtained show that some problem design decisions, such as the large amount of data, or the ambiguity of social concepts, such as justice and equity in taxation, are essential for the development of mathematical models. The conclusions of the study have implications for the design of statistical tasks, but also for identifying the role of mathematical modelling in the learning of statistical concepts.

References

Abassian, A., Safi, F., Bush, S., & Bostic, J. (2020). Five different perspectives on mathematical modeling in mathematics education. Investigations in Mathematics Learning, 12(1), 53-65. https://doi.org/10.1080/19477503.2019.1595360

Albarracín, L., Aymerich, À., & Gorgorió, N. (2017). An open task to promote students to create statistical concepts through modelling. Teaching Statistics, 39(3), 100-105. https://doi.org/10.1111/test.12136

Aymerich, À., & Albarracín, L. (2016). Complejidad en el proceso de modelización de una tarea estadística. Modelling in Science Education and Learning, 9(1), 5-24. https://doi.org/10.4995/msel.2016.4121

Aymerich, À., Gorgorió, N., & Albarracín, L. (2017). Modelling with statistical data: Characterisation of student models. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications (pp. 37-47). Springer. https://doi.org/10.1007/978-3-319-62968-1_3

Batanero, C., Estepa, A., Godino, J. D., & Green, D. R. (1996). Intuitive strategies and preconceptions about association in contingency tables. Journal for Research in Mathematics Education, 27, 151–169. https://doi.org/10.5951/jresematheduc.27.2.0151

Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education–Discussion document. Educational Studies in Mathematics, 51(1), 149-171. https://doi.org/10.1023/A:1022435827400

Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho, (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 73-96). Springer. https://doi.org/10.1007/978-3-319-12688-3_9

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.

Blum, W., & Leiβ, D. (2006). How do students and teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modeling (ICTMA12): Education, Engineering and Economics (pp. 222–231). Horwood Publishing. https://doi.org/10.1533/9780857099419.5.221

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM–The International Journal on Mathematics Education, 38(2), 86-95. https://doi.org/10.1007/BF02655883

Burrill, G., & Biehler R. (2011), Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics, Challenges for teaching and teacher education (pp. 57-69). Springer. https://doi.org/10.1007/978-94-007-1131-0_10

Carreira, S., Amado, N., & Lecoq, F. (2011). Mathematical modeling of daily life in adult education: Focusing on the notion of knowledge. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 199-210). Springer.

Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823. https://doi.org/10.2307/2975286

Crites, T., & Laurent, R. T. (2015). Putting essential understanding of statistics into practice, Grades 9-12. National Council of Teachers of Mathematics.

Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110-136. https://doi.org/10.2307/30034902

Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models. Mathematical Thinking and Learning, 1, 231–254. https://doi.org/10.1207/s15327833mtl0103_3

Dvir, M., & Ben-Zvi, D. (2018). The role of model comparison in young learners’ reasoning with statistical models and modeling. ZDM Mathematics Education, 50(7), 1183-1196. https://doi.org/10.1007/s11858-018-0987-4

Gal, I. (2004). Statistical literacy: Meanings, components, responsibilities. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 47-78). Springer. https://doi.org/10.1007/1-4020-2278-6_3

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modeling process. ZDM–The International Journal on Mathematics Education, 38(2), 143-162. https://doi.org/10.1007/BF02655886

Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modeling – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 301–304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30

Hahn, C. (2015). La recherche internationale en éducation statistique: État des lieux et questions vives. Statistique et Enseignement, 6(2), 25-39.

Hernández-Sabaté, A., Albarracín, L., & Sánchez, F. J. (2020). Graph-based problem explorer: A software tool to support algorithm design learning while solving the salesperson problem. Mathematics, 8(9), 1595. https://doi.org/10.3390/math8091595

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM–The International Journal on Mathematics Education, 38(3), 302-310. https://doi.org/10.1007/BF02652813

Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modeling: Connecting to research and practice. International perspectives on the teaching and learning of mathematical modeling (pp. 277-293). Springer. https://doi.org/10.1007/978-94-007-6540-5_23

Lehrer, R., & Schauble, L. (2000). Inventing data structures for representational purposes: Elementary grade students’ classification models. Mathematical Thinking and Learning, 2, 51–74. https://doi.org/10.1207/S15327833MTL0202_3

Lesh, R. (1997). Matematización: La necesidad “real” de la fluidez en las representaciones. Enseñanza de las Ciencias, 15(3), 377-391.

Lesh, R., Amit, M., & Schorr, R. Y. (1997). Using “real-life” problems to prompt students to construct statistical models for statistical reasoning. In I. Gal & J. Garfield (Eds.), The assessment challenge in statistics education (pp. 65–84). IOS Press.

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998

Makar, K., & Confrey, J. (2005). Variation talk: Articulating meaning in statistics. Statistics Education Research Journal, 4(1), 27-54.

Muñiz-Rodríguez, L., Rodríguez-Muñiz, L. J., & Alsina, Á. (2020). Deficits in the statistical and probabilistic literacy of citizens: Effects in a world in crisis. Mathematics, 8(11), 1872. https://doi.org/10.3390/math8111872

Pollak, H. O. (1969). How can we teach applications of mathematics? Educational Studies in Mathematics, 2, 393-404. https://doi.org/10.1007/BF00303471

Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In H. G. Steiner & B. Christiansen (Eds.), New trends in mathematics teaching IV (pp. 232-248). UNESCO.

Ramírez-Montes, G., Carreira, S., & Henriques, A. (2021). Mathematical modelling routes supported by technology in the learning of linear algebra: A study with Costa Rican undergraduate students. Quadrante, 30(1), 219-241. https://doi.org/10.48489/quadrante.23721

Ubilla, F. (2019). Componentes del sentido estadístico identificados en un ciclo de investigación estadística desarrollado por futuras maestras de primaria. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano, & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 583-592). SEIEM.

Ubilla, F. (2020). ¿Qué rol juegan los datos en el ciclo de investigación estadística? UNO, 91, 63-68.

Zawojewski, J., Lesh, R., & English, L. D. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics teaching, learning, and problem solving (pp. 337-358). Lawrence Erlbaum Associates.

Published

2021-12-31

How to Cite

Aymerich, Àngels, & Albarracín, L. (2021). Mathematical modelling in statistical activities: identifying key elements of design to promote model generation in the study of variability. Quadrante, 30(2), 179–199. https://doi.org/10.48489/quadrante.23686

Issue

Section

Articles