Modelización matemática en actividades estadísticas: identificando elementos clave del diseño para promover la generación de modelos en el estudio de la variabilidad

Autores

DOI:

https://doi.org/10.48489/quadrante.23686

Palavras-chave:

modelización matemática, actividades promotoras de la modelización, educación secundaria, estadística, variabilidad

Resumo

En nuestro trabajo estamos interesados en promover el aprendizaje de conocimientos estadísticos a partir de la modelización matemática. Usamos problemas estadísticos donde se estudian fenómenos sociales reales a partir de grandes cantidades de datos y que cumplen con los principios de diseño de las Modelling Eliciting Activities con alumnos de Educación Secundaria (15 años). Las tareas se dirigen a promover el desarrollo del concepto de variabilidad y aplicarlo para entender la situación estudiada. En este estudio nos centramos en caracterizar los modelos matemáticos que desarrolla el alumnado en una actividad de modelización estadística intentando identificar por qué se integran elementos al modelo o se descartan. Para ello se desarrolla un análisis cualitativo a partir de las grabaciones del trabajo en grupo de los alumnos en el aula. Los resultados obtenidos muestran que algunas decisiones de diseño del problema, como la gran cantidad de datos, o la ambigüedad de conceptos sociales, como el de justicia y equidad en los impuestos, resultan esenciales para el desarrollo de los modelos matemáticos. Las conclusiones del estudio tienen implicaciones para el diseño de tareas estadísticas, pero también para identificar el rol de la modelización matemática en el aprendizaje de conceptos estadísticos.

Referências

Abassian, A., Safi, F., Bush, S., & Bostic, J. (2020). Five different perspectives on mathematical modeling in mathematics education. Investigations in Mathematics Learning, 12(1), 53-65. https://doi.org/10.1080/19477503.2019.1595360

Albarracín, L., Aymerich, À., & Gorgorió, N. (2017). An open task to promote students to create statistical concepts through modelling. Teaching Statistics, 39(3), 100-105. https://doi.org/10.1111/test.12136

Aymerich, À., & Albarracín, L. (2016). Complejidad en el proceso de modelización de una tarea estadística. Modelling in Science Education and Learning, 9(1), 5-24. https://doi.org/10.4995/msel.2016.4121

Aymerich, À., Gorgorió, N., & Albarracín, L. (2017). Modelling with statistical data: Characterisation of student models. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications (pp. 37-47). Springer. https://doi.org/10.1007/978-3-319-62968-1_3

Batanero, C., Estepa, A., Godino, J. D., & Green, D. R. (1996). Intuitive strategies and preconceptions about association in contingency tables. Journal for Research in Mathematics Education, 27, 151–169. https://doi.org/10.5951/jresematheduc.27.2.0151

Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education–Discussion document. Educational Studies in Mathematics, 51(1), 149-171. https://doi.org/10.1023/A:1022435827400

Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho, (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 73-96). Springer. https://doi.org/10.1007/978-3-319-12688-3_9

Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.

Blum, W., & Leiβ, D. (2006). How do students and teachers deal with modeling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modeling (ICTMA12): Education, Engineering and Economics (pp. 222–231). Horwood Publishing. https://doi.org/10.1533/9780857099419.5.221

Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM–The International Journal on Mathematics Education, 38(2), 86-95. https://doi.org/10.1007/BF02655883

Burrill, G., & Biehler R. (2011), Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics, Challenges for teaching and teacher education (pp. 57-69). Springer. https://doi.org/10.1007/978-94-007-1131-0_10

Carreira, S., Amado, N., & Lecoq, F. (2011). Mathematical modeling of daily life in adult education: Focusing on the notion of knowledge. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 199-210). Springer.

Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823. https://doi.org/10.2307/2975286

Crites, T., & Laurent, R. T. (2015). Putting essential understanding of statistics into practice, Grades 9-12. National Council of Teachers of Mathematics.

Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110-136. https://doi.org/10.2307/30034902

Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models. Mathematical Thinking and Learning, 1, 231–254. https://doi.org/10.1207/s15327833mtl0103_3

Dvir, M., & Ben-Zvi, D. (2018). The role of model comparison in young learners’ reasoning with statistical models and modeling. ZDM Mathematics Education, 50(7), 1183-1196. https://doi.org/10.1007/s11858-018-0987-4

Gal, I. (2004). Statistical literacy: Meanings, components, responsibilities. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 47-78). Springer. https://doi.org/10.1007/1-4020-2278-6_3

Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modeling process. ZDM–The International Journal on Mathematics Education, 38(2), 143-162. https://doi.org/10.1007/BF02655886

Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modeling – Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 301–304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30

Hahn, C. (2015). La recherche internationale en éducation statistique: État des lieux et questions vives. Statistique et Enseignement, 6(2), 25-39.

Hernández-Sabaté, A., Albarracín, L., & Sánchez, F. J. (2020). Graph-based problem explorer: A software tool to support algorithm design learning while solving the salesperson problem. Mathematics, 8(9), 1595. https://doi.org/10.3390/math8091595

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM–The International Journal on Mathematics Education, 38(3), 302-310. https://doi.org/10.1007/BF02652813

Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), Teaching mathematical modeling: Connecting to research and practice. International perspectives on the teaching and learning of mathematical modeling (pp. 277-293). Springer. https://doi.org/10.1007/978-94-007-6540-5_23

Lehrer, R., & Schauble, L. (2000). Inventing data structures for representational purposes: Elementary grade students’ classification models. Mathematical Thinking and Learning, 2, 51–74. https://doi.org/10.1207/S15327833MTL0202_3

Lesh, R. (1997). Matematización: La necesidad “real” de la fluidez en las representaciones. Enseñanza de las Ciencias, 15(3), 377-391.

Lesh, R., Amit, M., & Schorr, R. Y. (1997). Using “real-life” problems to prompt students to construct statistical models for statistical reasoning. In I. Gal & J. Garfield (Eds.), The assessment challenge in statistics education (pp. 65–84). IOS Press.

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998

Makar, K., & Confrey, J. (2005). Variation talk: Articulating meaning in statistics. Statistics Education Research Journal, 4(1), 27-54.

Muñiz-Rodríguez, L., Rodríguez-Muñiz, L. J., & Alsina, Á. (2020). Deficits in the statistical and probabilistic literacy of citizens: Effects in a world in crisis. Mathematics, 8(11), 1872. https://doi.org/10.3390/math8111872

Pollak, H. O. (1969). How can we teach applications of mathematics? Educational Studies in Mathematics, 2, 393-404. https://doi.org/10.1007/BF00303471

Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In H. G. Steiner & B. Christiansen (Eds.), New trends in mathematics teaching IV (pp. 232-248). UNESCO.

Ramírez-Montes, G., Carreira, S., & Henriques, A. (2021). Mathematical modelling routes supported by technology in the learning of linear algebra: A study with Costa Rican undergraduate students. Quadrante, 30(1), 219-241. https://doi.org/10.48489/quadrante.23721

Ubilla, F. (2019). Componentes del sentido estadístico identificados en un ciclo de investigación estadística desarrollado por futuras maestras de primaria. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano, & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 583-592). SEIEM.

Ubilla, F. (2020). ¿Qué rol juegan los datos en el ciclo de investigación estadística? UNO, 91, 63-68.

Zawojewski, J., Lesh, R., & English, L. D. (2003). A models and modeling perspective on the role of small group learning activities. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics teaching, learning, and problem solving (pp. 337-358). Lawrence Erlbaum Associates.

Publicado

2021-12-31

Como Citar

Aymerich, Àngels, & Albarracín, L. (2021). Modelización matemática en actividades estadísticas: identificando elementos clave del diseño para promover la generación de modelos en el estudio de la variabilidad. Quadrante, 30(2), 179–199. https://doi.org/10.48489/quadrante.23686

Edição

Secção

Artigos